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Introduction

Ray is defined as normal to a wavefront.

Ray is characterized by the angle and trajectory.
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Introduction

Ray angle can be found using snell’s law.

k(zi)cosθ(zi) = k(zi+1)cosθ(zi+1)

The ray trajectory can be found using the figure above

dr
dz

= cotθ(z) and r(z) =
∫ zr

z0

cotθ(z)dz
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Mathematical Derivation

Ray series solution of wave equation

Starting with helmholtz equation in Cartesian coordinates

∇2p +
ω2

c2(x)
p = δ(x− x0)

In the ray theory, the solution will be of the ray series form

p(x) = eiωτ(x)
∞∑

j=0

Aj(x)
(iω)j

Taking the derivative and computing the divergence we have

∇2p = eiωτ[−ω2|∇τ2|+ iω∇2τ]

∞∑
j=0

Aj

(iω)j

+eiωτ(x)

2iω∇τ ·
∞∑

j=0

∇Aj

(iω)j +

∞∑
j=0

∇2Aj

(iω)j


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Mathematical Derivation

Eikonal equation

Eikonal equation is used to trace the acoustic rays and find the phase of
the pressure field.

|∇τ|2 =
1

c2(x)

Ray coordinates are used to linearize the differential equation.

Considering ∇τ perpendicular to the wavefront, the ray trajectory x(s) is
defined as.

dx
ds

= c∇τ and
∣∣∣∣dx
ds

∣∣∣∣2 = c2|∇τ|2

The eikonal equation can be represented in terms of c(x) by doing some
manipulations.

d
ds

(
1
c

dx
ds

)
= − 1

c2∇c
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Mathematical Derivation

Eikonal equation

In cylindrical coordinates (r, z), these ray equations will be given in
first-order form as.

dr
dz

= cξ(s),
dξ
ds

= − 1
c2
∂c
∂r

dz
ds

= cζ(s)
dζ
ds

= − 1
c2
∂c
∂z

In order to completely specify the equation, the initial conditions are
used to specify the source position (r0, z0) and take-off angle θ0.

r = r0, ξ = −cosθ0

c(0)

z = z0, ζ = −sinθ0

c(0)
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Mathematical Derivation

Phase of the pressure field

The phase of the pressure field is obtained from the eikonal equation in
ray coordinate system

∇τ · ∇τ =
1
c2

∇τ · 1
c

dx
ds

=
1
c2

dτ
ds

=
1
c

This is the eikonal equation in ray coordinate s. Linearizing the PDE we
have

τ(s) = τ(0) +
∫ s

0

1
c(s′)

ds′
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Mathematical Derivation

Ray amplitudes and Jacobian

The amplitude of the pressure field is obtained from the transport
equation in ray cooridinate system

2∇τ · ∇A0 + (∇2τ)A0 = 0

Rays are defined as being perpendicular to the wavefront so

2
c

dx
ds
· ∇A0 + (∇2τ)A0 = 0

The first term represents the directional derivative along the ray path so

2
c

dA0

ds
+ (∇2τ)A0 = 0
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Mathematical Derivation

Ray amplitudes and Jacobian

2
c

dx
ds
· ∇A0 + (∇2τ)A0 = 0

2
c

dA0

ds
+ (∇2τ)A0 = 0

∇2τ can be calculated using the Jacobian

∇2τ =
1
J

d
ds

(
J
c

)

Putting this value and integrating we have

A0(s) = A0(0)
∣∣∣∣c(s)J(0)c(0)J(s)

∣∣∣∣1/2
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Mathematical Derivation

Initial Conditions

τ(s) = τ(0) +
∫ s

0

1
c(s′)

ds′

A0(s) = A0(0)
∣∣∣∣c(s)J(0)c(0)J(s)

∣∣∣∣1/2

Initial condition is found using the canonical problems method.
Considering the point source in an infinite homogenous media as
canonical problem

p0(s) =
eiωs/c0

4πs

where s is the distance from the source and c0 = c|s=0.
The amplitude and the phase associated with the solution are.

A0(s) =
1

4πs
τ0(s) =

s
c0

A0(0) =∞ τ(0) = 0 (1)
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Mathematical Derivation

Initial Conditions

For A0 the intial condition is computed for A0(0)|J(0)|1/2

The Jacobian in the homongenous medium turns out to be

J(s) = −s2cosθ0

The initial condition will be

lim
s→0

A(s)|J(s)|1/2 =
1

4π
|cosθ0|1/2

Putting this in A0(s) and then obtaining the complete pressure field,

p(s) =
1

4π

∣∣∣∣c(s)cosθ0

c(0)J(s)

∣∣∣∣1/2

eiω
∫ s

0
1

c(s′)ds′
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Intensity Calculation

Coherent Transmission Loss

The intensity at any point in the pressure field is the sum of the
contribution of each eigen ray

p(C)(r, z) =
N(r,z)∑

j=1

pj(r, z)

The number of contributing eigenrays varies with the range and
source-receiver position.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 27/04/2015 14 / 28



Intensity Calculation

Coherent Transmission Loss

The intensity at any point in the pressure field is the sum of the
contribution of each eigen ray

p(C)(r, z) =
N(r,z)∑

j=1

pj(r, z)

The number of contributing eigenrays varies with the range and
source-receiver position.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 27/04/2015 14 / 28



Intensity Calculation

Coherent Transmission Loss

The intensity at any point in the pressure field is the sum of the
contribution of each eigen ray

p(C)(r, z) =
N(r,z)∑

j=1

pj(r, z)

The number of contributing eigenrays varies with the range and
source-receiver position.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 27/04/2015 14 / 28



Intensity Calculation

Coherent Transmission Loss

In the near-field the contributing rays can be direct ray, bottom bounced
ray and a surface bounced ray.

At longer ranges, there can be many rays with many top and bottom
interactions.
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Intensity Calculation

Incoherent Transmission Loss

Ray methods are used for high frequency problems.

At high frequencies, the pressure field is very sensitive to the
environmental factors and detailed knowledge of the enviroment is not
available all the time.

In this case incoherent calculations are considered where the phase of the
pressure associated with each ray is ignored.

p(I)(r, z) =

N(r,z)∑
j=1

|pj(r, z)|2
1/2

Computationally efficient because the sampling in terms of rays and ray
step size is less critical.
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Intensity Calculation

Coherent Vs Incoherent Transmission Loss
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Intensity Calculation

Semicoherent Transmission Loss

Compromises between the coherent and non-coherent solutions.

Informal and partially empirical based techniques.

p(S)(r, z) =

N(r,z)∑
j=1

S(θ0)|pj(r, z)|2
1/2

S(θ0) is a shading function which weights the amplitude of the rays as a
function of its take-off angle.

Appropriate for directional sources.
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Intensity Calculation

Geometric Beams

How to calculate the field in between the rays ?

Interpolate from the ray grid by constructing a beam around each ray.

The amplitude of the rays varies linearly on both side of the ray.

The halfwidth is chosen so that the beam vanishes at the location of its
neighboring ray.
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Some mathematical properties

Treatment of attenuation
Volumetric attenuation can be included by adding an imaginary part to
the sound speed.

Complicates the process of finding the eigenrays.

To simplify, we can neglect the imaginary part of the sound speed and
add a loss corresponding to the path length of the real rays.

Eikonal equation is given by.

c2(x)|∇τ|2 = 1

Perturbed sound speed is given by.

c = c0 + εc1 + · · ·

and seeking solution of the form.

τ = τ0 + ετ1 + · · ·
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Some mathematical properties

Treatment of attenuation
Comparing O(ε) term.

c2
0(∇τ0)(∇τ1) + c0c1|∇τ0|2 = 0

After some manipulations we have .

τ1(s) = −
∫ s

0

c1(s′)
c2

0(s
′)

ds′

If the perturbation is due to loss α, it introduces an imaginary part in the
sound speed.

ici ' −iα
|c2

r |
ω

Putting this value the complete pressure field becomes.

p(s) =
1

4π

∣∣∣∣c(s)cosθ0

c(0)J(s)

∣∣∣∣1/2

eiω
∫ s

0
1

c(s′) ds′e−i
∫ s

0 α(s
′)ds′
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Related Techniques

WKB Method

Application of ray theory to one dimensional problems.

The derivation of WKB approximation proceeds the same way except all
vectors equations becomes scalar with single variable z.

p(z) = eiωτ(z)
∞∑

j=0

Aj(z)
(iω)j

Similarly the eikonal and transport equations become.∣∣∣∣dτdz

∣∣∣∣2 =
k2

z (z)
ω2

2
dτ
dz

dA0

dz
+

d2τ

dz2 A0 = 0

2
dτ
dz

dAj

dz
+

d2τ

dz2 Aj = −
d2Aj−1

dz2 , j = 1, 2, . . .
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Related Techniques

WKB Method
Solving the eikonal equation we have

τ(z) = ± 1
ω

∫
kz(z)dz

Using this result, the first transport equation becomes

2kz(z)
dA0

dz
+

dkz

dz
A0 = 0

Implying

A0(z) =
B√
kz(z)

Putting is all together we have the pressure field,

p(kr, z) '
Be±

∫ z
z0

kz(z′)dz′√
kz(z)

where B is an arbitrary constant.
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Related Techniques

WKB Method

WKB solution breaks down in the vicinity of the turning points.

2D ray result gives the field at a given point in terms of contribution of a
finite number of eigenrays contribution.

WKB solution represents a single spectral component and the field at any
point is obtained by summing up infinite number of contributions.

Spectral integral is asymptotically dominated by particular points in the
kr spectrum.

Take-off angle of eigen rays is different for different source receiver
positions, similarly different part of the spectral integral produce
dominant contribution depending on the source recevier depths.
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Take-off angle of eigen rays is different for different source receiver
positions, similarly different part of the spectral integral produce
dominant contribution depending on the source recevier depths.
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Wavenumber integration Techniques

Introduction

Numerical implementation of the integral transform technique for
horizontally stratified media.

The final solution is in the form of spectral wavenumber integral.

This technique provides the wave field in each layer in terms of unknown
coefficients.

These coefficients are obtained by matching boundry conditions
simultaneously at all interface.
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Wavenumber integration Techniques

Integral Transform solution

Considering cylinderical coordinate system (r, ϕ, z) with z-axis passing
through the source, the field is independent of the azimuthal angle ϕ.

The acoustic field in layer m containing the source can be expressed in
terms of displacement potential ψm(r, z) satisfying the Helmholtz
equation.

[∇2 + k2
m(z)]ψm(r, z) = fs(z, ω)

δ(r)
2πr

where km(z) =
ω

c(z)

The solution of the wave equation will be a combination of green
functions.

ψm(kr, z) = ψ̂m(kr, z) + A+
m (kr)ψ

+
m (kr, z) + A−m (kr)ψ

−
m (kr, z)
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Wavenumber integration Techniques

Integral Transform solution

A+
m (kr) and A−m (kr) can be found from the boundary conditions at the

interfaces.

ψ̂m(kr, z) is the field produced by the source in the absence of
boundaries.

The total field at the angular frequency ω is found by evaluating the
inverse Hankel transform.

In wavenumber integration implementation, the solution of the wave
equation in boundry less case is evaluated analytically unlike normal
mode technique.
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Wavenumber integration Techniques

Homogeneous Fluid Layers

In the absence of a source, the total field can be represented as a
combination of an upgoing and downgoing canonical wave.

φ(r, z) =
∫ ∞

0

[
A−e−ikzz + A+e−ikzz

]
J0(krr)krdkr

To evaluate the boundry conditions vertical displacement w(r, z) and
normal stress σzz is used.

w(r, z) =
∂φ

∂z
σzz = −ρω2φ(r, z)

In the presence of a source we have to add the contribution of φ̂(kr, z).

φ̂(kr, z) =
Sω
4π

eikz|z−zs|

ikz
J0(krr)dkr
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