Computational Ocean Acoustics (Ray Theory)

SALMAN IJAZ SIDDIQUI

Department of Electronics and Telecommunication, Norwegian University of Science and Technology (NTNU). NO-7491 Trondheim, Norway.

- NTNU

April 27, 2015

Presentation Outline

- Introduction.
- Mathematical Derivation.
- Mathematical properties.
- WKB method.
- Wavenumber integration technique .

Presentation Outline

- Introduction.
- Mathematical Derivation.
- Mathematical properties.
- WKB method.
- Wavenumber integration technique .

Presentation Outline

- Introduction.
- Mathematical Derivation.
- Mathematical properties.
- WKB method.
- Wavenumber integration technique .

Presentation Outline

- Introduction.
- Mathematical Derivation.
- Mathematical properties.
- WKB method.
- Wavenumber integration technique .

Presentation Outline

- Introduction.
- Mathematical Derivation.
- Mathematical properties.
- WKB method.
- Wavenumber integration technique .

Presentation Outline

- Introduction.
- Mathematical Derivation.
- Mathematical properties.
- WKB method.
- Wavenumber integration technique .

Introduction

- Ray is defined as normal to a wavefront.
- Ray is characterized by the angle and trajectory.

Introduction

- Ray is defined as normal to a wavefront.
- Ray is characterized by the angle and trajectory.

Introduction

- Ray is defined as normal to a wavefront.
- Ray is characterized by the angle and trajectory.

Introduction

- Ray angle can be found using snell's law.

$$
k\left(z_{i}\right) \cos \theta\left(z_{i}\right)=k\left(z_{i+1}\right) \cos \theta\left(z_{i+1}\right)
$$

- The ray trajectory can be found using the figure above

$$
\frac{d r}{d z}=\cot \theta(z) \quad \text { and } \quad r(z)=\int_{z_{0}}^{z_{r}} \cot \theta(z) d z
$$

Introduction

- Ray angle can be found using snell's law.

$$
k\left(z_{i}\right) \cos \theta\left(z_{i}\right)=k\left(z_{i+1}\right) \cos \theta\left(z_{i+1}\right)
$$

- The ray trajectory can be found using the figure above

Introduction

- Ray angle can be found using snell's law.

$$
k\left(z_{i}\right) \cos \theta\left(z_{i}\right)=k\left(z_{i+1}\right) \cos \theta\left(z_{i+1}\right)
$$

- The ray trajectory can be found using the figure above

$$
\frac{d r}{d z}=\cot \theta(z) \quad \text { and } \quad r(z)=\int_{z_{0}}^{z_{r}} \cot \theta(z) d z
$$

Ray series solution of wave equation

- Starting with helmholtz equation in Cartesian coordinates

$$
\nabla^{2} p+\frac{\omega^{2}}{c^{2}(x)} p=\delta\left(x-x_{0}\right)
$$

- In the ray theory, the solution will be of the ray series form

$$
p(x)=e^{i \omega \tau(x)} \sum_{j=0}^{\infty} \frac{A_{j}(x)}{(i \omega)^{j}}
$$

- Taking the derivative and computing the divergence we have

Ray series solution of wave equation

- Starting with helmholtz equation in Cartesian coordinates

$$
\nabla^{2} p+\frac{\omega^{2}}{c^{2}(x)} p=\delta\left(x-x_{0}\right)
$$

- In the ray theory, the solution will be of the ray series form

- Taking the derivative and computing the divergence we have

Ray series solution of wave equation

- Starting with helmholtz equation in Cartesian coordinates

$$
\nabla^{2} p+\frac{\omega^{2}}{c^{2}(x)} p=\delta\left(x-x_{0}\right)
$$

- In the ray theory, the solution will be of the ray series form

$$
p(x)=e^{i \omega \tau(x)} \sum_{j=0}^{\infty} \frac{A_{j}(x)}{(i \omega)^{j}}
$$

- Taking the derivative and computing the divergence we have

Ray series solution of wave equation

- Starting with helmholtz equation in Cartesian coordinates

$$
\nabla^{2} p+\frac{\omega^{2}}{c^{2}(x)} p=\delta\left(x-x_{0}\right)
$$

- In the ray theory, the solution will be of the ray series form

$$
p(x)=e^{i \omega \tau(x)} \sum_{j=0}^{\infty} \frac{A_{j}(x)}{(i \omega)^{j}}
$$

- Taking the derivative and computing the divergence we have

$$
\begin{aligned}
& \nabla^{2} p=e^{i \omega \tau}\left[-\omega^{2}\left|\nabla \tau^{2}\right|+i \omega \nabla^{2} \tau\right] \sum_{j=0}^{\infty} \frac{A_{j}}{(i \omega)^{j}} \\
& +e^{i \omega \tau(x)}\left\{2 i \omega \nabla \tau \cdot \sum_{j=0}^{\infty} \frac{\nabla A_{j}}{(i \omega)^{j}}+\sum_{j=0}^{\infty} \frac{\nabla^{2} A_{j}}{(i \omega)^{j}}\right\}
\end{aligned}
$$

Eikonal equation

- Eikonal equation is used to trace the acoustic rays and find the phase of the pressure field.

$$
|\nabla \tau|^{2}=\frac{1}{c^{2}(x)}
$$

- Ray coordinates are used to linearize the differential equation.
- Considering $\nabla \tau$ perpendicular to the wavefront, the ray trajectory $x(s)$ is defined as.

$$
\frac{d x}{d s}=c \nabla \tau \quad \text { and } \quad\left|\frac{d x}{d s}\right|^{2}=c^{2}|\nabla \tau|^{2}
$$

- The eikonal equation can be represented in terms of $c(x)$ by doing some manipulations.

$$
\frac{d}{d s}\left(\frac{1}{c} \frac{d x}{d s}\right)=-\frac{1}{c^{2}} \nabla c
$$

Eikonal equation

- Eikonal equation is used to trace the acoustic rays and find the phase of the pressure field.

$$
|\nabla \tau|^{2}=\frac{1}{c^{2}(x)}
$$

- Ray coordinates are used to linearize the differential equation.
- Considering $\nabla \tau$ perpendicular to the wavefront, the ray trajectory $x(s)$ is defined as.

- The eikonal equation can be represented in terms of $c(x)$ by doing some manipulations.

Eikonal equation

- Eikonal equation is used to trace the acoustic rays and find the phase of the pressure field.

$$
|\nabla \tau|^{2}=\frac{1}{c^{2}(x)}
$$

- Ray coordinates are used to linearize the differential equation.
- Considering $\nabla \tau$ perpendicular to the wavefront, the ray trajectory $x(s)$ is defined as.

- The eikonal equation can be represented in terms of $c(x)$ by doing some manipulations.

Eikonal equation

- Eikonal equation is used to trace the acoustic rays and find the phase of the pressure field.

$$
|\nabla \tau|^{2}=\frac{1}{c^{2}(x)}
$$

- Ray coordinates are used to linearize the differential equation.
- Considering $\nabla \tau$ perpendicular to the wavefront, the ray trajectory $x(s)$ is defined as.

$$
\frac{d x}{d s}=c \nabla \tau \quad \text { and } \quad\left|\frac{d x}{d s}\right|^{2}=c^{2}|\nabla \tau|^{2}
$$

- The eikonal equation can be represented in terms of $c(x)$ by doing some manipulations.

Eikonal equation

- Eikonal equation is used to trace the acoustic rays and find the phase of the pressure field.

$$
|\nabla \tau|^{2}=\frac{1}{c^{2}(x)}
$$

- Ray coordinates are used to linearize the differential equation.
- Considering $\nabla \tau$ perpendicular to the wavefront, the ray trajectory $x(s)$ is defined as.

$$
\frac{d x}{d s}=c \nabla \tau \quad \text { and } \quad\left|\frac{d x}{d s}\right|^{2}=c^{2}|\nabla \tau|^{2}
$$

- The eikonal equation can be represented in terms of $c(x)$ by doing some manipulations.

$$
\frac{d}{d s}\left(\frac{1}{c} \frac{d x}{d s}\right)=-\frac{1}{c^{2}} \nabla c
$$

Eikonal equation

- In cylindrical coordinates (r, z), these ray equations will be given in first-order form as.

$$
\begin{array}{rlr}
\frac{d r}{d z}=c \xi(s), & \frac{d \xi}{d s}=-\frac{1}{c^{2}} \frac{\partial c}{\partial r} \\
\frac{d z}{d s}=c \zeta(s) & \frac{d \zeta}{d s}=-\frac{1}{c^{2}} \frac{\partial c}{\partial z}
\end{array}
$$

- In order to completely specify the equation, the initial conditions are used to specify the source position $\left(r_{0}, z_{0}\right)$ and take-off angle θ_{0}.

$$
\begin{aligned}
r & =r_{0}, & & \xi=-\frac{\cos \theta_{0}}{c(0)} \\
z & =z_{0}, & & \zeta=-\frac{\sin \theta_{0}}{c(0)}
\end{aligned}
$$

Eikonal equation

In order to completely specify the equation, the initial conditions are used to specify the source position $\left(r_{0}, z_{0}\right)$ and take-off angle θ_{0}.

$$
\begin{aligned}
r & =r_{0}, & & \xi=-\frac{\cos \theta_{0}}{c(0)} \\
z & =z_{0}, & \zeta & =-\frac{\sin \theta_{0}}{c(0)}
\end{aligned}
$$

Phase of the pressure field

- The phase of the pressure field is obtained from the eikonal equation in ray coordinate system

- This is the eikonal equation in ray coordinate s. Linearizing the PDE we have

Phase of the pressure field

- The phase of the pressure field is obtained from the eikonal equation in ray coordinate system

$$
\begin{aligned}
& \nabla \tau \cdot \nabla \tau=\frac{1}{c^{2}} \\
& \nabla \tau \cdot \frac{1}{c} \frac{d x}{d s}=\frac{1}{c^{2}} \\
& \frac{d \tau}{d s}=\frac{1}{c}
\end{aligned}
$$

- This is the eikonal equation in ray coordinate s. Linearizing the PDE we have

Phase of the pressure field

- The phase of the pressure field is obtained from the eikonal equation in ray coordinate system

$$
\begin{aligned}
& \nabla \tau \cdot \nabla \tau=\frac{1}{c^{2}} \\
& \nabla \tau \cdot \frac{1}{c} \frac{d x}{d s}=\frac{1}{c^{2}} \\
& \frac{d \tau}{d s}=\frac{1}{c}
\end{aligned}
$$

- This is the eikonal equation in ray coordinate s. Linearizing the PDE we have

$$
\tau(s)=\tau(0)+\int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime}
$$

Ray amplitudes and Jacobian

- The amplitude of the pressure field is obtained from the transport equation in ray cooridinate system

$$
2 \nabla \tau \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- Rays are defined as being perpendicular to the wavefront so

$$
\frac{2}{c} \frac{d x}{d s} \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- The first term represents the directional derivative along the ray path so

$$
\frac{2 d A_{0}}{c}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

Ray amplitudes and Jacobian

- The amplitude of the pressure field is obtained from the transport equation in ray cooridinate system

$$
2 \nabla \tau \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- Rays are defined as being perpendicular to the wavefront so

- The first term represents the directional derivative along the ray path so

Ray amplitudes and Jacobian

- The amplitude of the pressure field is obtained from the transport equation in ray cooridinate system

$$
2 \nabla \tau \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- Rays are defined as being perpendicular to the wavefront so

$$
\frac{2}{c} \frac{d x}{d s} \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- The first term represents the directional derivative along the ray path so

Ray amplitudes and Jacobian

- The amplitude of the pressure field is obtained from the transport equation in ray cooridinate system

$$
2 \nabla \tau \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- Rays are defined as being perpendicular to the wavefront so

$$
\frac{2}{c} \frac{d x}{d s} \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

- The first term represents the directional derivative along the ray path so

$$
\frac{2}{c} \frac{d A_{0}}{d s}+\left(\nabla^{2} \tau\right) A_{0}=0
$$

Ray amplitudes and Jacobian

$$
\begin{aligned}
\frac{2}{c} \frac{d x}{d s} \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0} & =0 \\
\frac{2}{c} \frac{d A_{0}}{d s}+\left(\nabla^{2} \tau\right) A_{0} & =0
\end{aligned}
$$

- $\nabla^{2} \tau$ can be calculated using the Jacobian

- Putting this value and integrating we have

Ray amplitudes and Jacobian

$$
\begin{aligned}
\frac{2}{c} \frac{d x}{d s} \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0} & =0 \\
\frac{2}{c} \frac{d A_{0}}{d s}+\left(\nabla^{2} \tau\right) A_{0} & =0
\end{aligned}
$$

- $\nabla^{2} \tau$ can be calculated using the Jacobian

$$
\nabla^{2} \tau=\frac{1}{J} \frac{d}{d s}\left(\frac{J}{c}\right)
$$

- Putting this value and integrating we have

Ray amplitudes and Jacobian

$$
\begin{array}{r}
\frac{2}{c} \frac{d x}{d s} \cdot \nabla A_{0}+\left(\nabla^{2} \tau\right) A_{0}=0 \\
\frac{2 d A_{0}}{c}+\left(\nabla^{2} \tau\right) A_{0}=0
\end{array}
$$

- $\nabla^{2} \tau$ can be calculated using the Jacobian

$$
\nabla^{2} \tau=\frac{1}{J} \frac{d}{d s}\left(\frac{J}{c}\right)
$$

- Putting this value and integrating we have

$$
A_{0}(s)=A_{0}(0)\left|\frac{c(s) J(0)}{c(0) J(s)}\right|^{1 / 2}
$$

Initial Conditions

$$
\begin{aligned}
\tau(s) & =\tau(0)+\int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime} \\
A_{0}(s) & =A_{0}(0)\left|\frac{c(s) J(0)}{c(0) J(s)}\right|^{1 / 2}
\end{aligned}
$$

- Initial condition is found using the canonical problems method.
- Considering the point source in an infinite homogenous media as canonical problem

$$
p^{0}(s)=\frac{e^{i \omega s / c_{0}}}{4 \pi s}
$$

- where s is the distance from the source and $c_{0}=\left.c\right|_{s=0}$.
- The amplitude and the phase associated with the solution are.

Initial Conditions

$$
\begin{aligned}
\tau(s) & =\tau(0)+\int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime} \\
A_{0}(s) & =A_{0}(0)\left|\frac{c(s) J(0)}{c(0) J(s)}\right|^{1 / 2}
\end{aligned}
$$

- Initial condition is found using the canonical problems method.
- Considering the point source in an infinite homogenous media as canonical problem

- where s is the distance from the source and $c_{0}=\left.c\right|_{s=0}$.
- The amplitude and the phase associated with the solution are.

Initial Conditions

$$
\begin{aligned}
\tau(s) & =\tau(0)+\int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime} \\
A_{0}(s) & =A_{0}(0)\left|\frac{c(s) J(0)}{c(0) J(s)}\right|^{1 / 2}
\end{aligned}
$$

- Initial condition is found using the canonical problems method.
- Considering the point source in an infinite homogenous media as canonical problem

$$
p^{0}(s)=\frac{e^{i \omega s / c_{0}}}{4 \pi s}
$$

- where s is the distance from the source and $c_{0}=\left.c\right|_{s=0}$.
- The amplitude and the phase associated with the solution are.

Initial Conditions

$$
\begin{aligned}
\tau(s) & =\tau(0)+\int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime} \\
A_{0}(s) & =A_{0}(0)\left|\frac{c(s) J(0)}{c(0) J(s)}\right|^{1 / 2}
\end{aligned}
$$

- Initial condition is found using the canonical problems method.
- Considering the point source in an infinite homogenous media as canonical problem

$$
p^{0}(s)=\frac{e^{i \omega s / c_{0}}}{4 \pi s}
$$

- where s is the distance from the source and $c_{0}=\left.c\right|_{s=0}$.
- The amplitude and the phase associated with the solution are.

Initial Conditions

$$
\begin{aligned}
\tau(s) & =\tau(0)+\int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime} \\
A_{0}(s) & =A_{0}(0)\left|\frac{c(s) J(0)}{c(0) J(s)}\right|^{1 / 2}
\end{aligned}
$$

- Initial condition is found using the canonical problems method.
- Considering the point source in an infinite homogenous media as canonical problem

$$
p^{0}(s)=\frac{e^{i \omega s / c_{0}}}{4 \pi s}
$$

- where s is the distance from the source and $c_{0}=\left.c\right|_{s=0}$.
- The amplitude and the phase associated with the solution are.

$$
\begin{array}{rr}
A^{0}(s)=\frac{1}{4 \pi s} & \tau^{0}(s)=\frac{s}{c_{0}} \\
A^{0}(0)=\infty & \tau(0)=0
\end{array}
$$

Initial Conditions

- For A_{0} the intial condition is computed for $A_{0}(0)|J(0)|^{1 / 2}$
- The Jacobian in the homongenous medium turns out to be

$$
J(s)=-s^{2} \cos \theta_{0}
$$

- The initial condition will be

$$
\lim _{s \rightarrow 0} A(s)|J(s)|^{1 / 2}=\frac{1}{4 \pi}\left|\cos \theta_{0}\right|^{1 / 2}
$$

- Putting this in $A_{0}(s)$ and then obtaining the complete pressure field,

$$
p(s)=\frac{1}{4 \pi}\left|\frac{c(s) \cos \theta_{0}}{c(0) J(s)}\right|^{1 / 2} e^{i \omega \int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime}}
$$

Initial Conditions

- For A_{0} the intial condition is computed for $A_{0}(0)|J(0)|^{1 / 2}$
- The Jacobian in the homongenous medium turns out to be

$$
J(s)=-s^{2} \cos \theta_{0}
$$

- The initial condition will be

- Putting this in $A_{0}(s)$ and then obtaining the complete pressure field,

Initial Conditions

- For A_{0} the intial condition is computed for $A_{0}(0)|J(0)|^{1 / 2}$
- The Jacobian in the homongenous medium turns out to be

$$
J(s)=-s^{2} \cos \theta_{0}
$$

- The initial condition will be

- Putting this in $A_{0}(s)$ and then obtaining the complete pressure field,

Initial Conditions

- For A_{0} the intial condition is computed for $A_{0}(0)|J(0)|^{1 / 2}$
- The Jacobian in the homongenous medium turns out to be

$$
J(s)=-s^{2} \cos \theta_{0}
$$

- The initial condition will be

$$
\lim _{s \rightarrow 0} A(s)|J(s)|^{1 / 2}=\frac{1}{4 \pi}\left|\cos \theta_{0}\right|^{1 / 2}
$$

- Putting this in $A_{0}(s)$ and then obtaining the complete pressure field,

Initial Conditions

- For A_{0} the intial condition is computed for $A_{0}(0)|J(0)|^{1 / 2}$
- The Jacobian in the homongenous medium turns out to be

$$
J(s)=-s^{2} \cos \theta_{0}
$$

- The initial condition will be

$$
\lim _{s \rightarrow 0} A(s)|J(s)|^{1 / 2}=\frac{1}{4 \pi}\left|\cos \theta_{0}\right|^{1 / 2}
$$

- Putting this in $A_{0}(s)$ and then obtaining the complete pressure field,

$$
p(s)=\frac{1}{4 \pi}\left|\frac{c(s) \cos \theta_{0}}{c(0) J(s)}\right|^{1 / 2} e^{i \omega \int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime}}
$$

Coherent Transmission Loss

- The intensity at any point in the pressure field is the sum of the contribution of each eigen ray
- The number of contributing eigenrays varies with the range and source-receiver position.

Coherent Transmission Loss

- The intensity at any point in the pressure field is the sum of the contribution of each eigen ray

$$
p^{(C)}(r, z)=\sum_{j=1}^{N(r, z)} p_{j}(r, z)
$$

- The number of contributing eigenrays varies with the range and source-receiver position.

Coherent Transmission Loss

- The intensity at any point in the pressure field is the sum of the contribution of each eigen ray

$$
p^{(C)}(r, z)=\sum_{j=1}^{N(r, z)} p_{j}(r, z)
$$

- The number of contributing eigenrays varies with the range and source-receiver position.

Coherent Transmission Loss

- In the near-field the contributing rays can be direct ray, bottom bounced ray and a surface bounced ray.
- At longer ranges, there can be many rays with many top and bottom interactions.

Coherent Transmission Loss

- In the near-field the contributing rays can be direct ray, bottom bounced ray and a surface bounced ray.
- At longer ranges, there can be many rays with many top and bottom interactions.

Coherent Transmission Loss

- In the near-field the contributing rays can be direct ray, bottom bounced ray and a surface bounced ray.
- At longer ranges, there can be many rays with many top and bottom interactions.

Incoherent Transmission Loss

- Ray methods are used for high frequency problems.
- At high frequencies, the pressure field is very sensitive to the environmental factors and detailed knowledge of the enviroment is not available all the time.
- In this case incoherent calculations are considered where the phase of the pressure associated with each ray is ignored.

$$
p^{(I)}(r, z)=\left[\sum_{j=1}^{N(r, z)}\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- Computationally efficient because the sampling in terms of rays and ray step size is less critical.

Incoherent Transmission Loss

- Ray methods are used for high frequency problems.
- At high frequencies, the pressure field is very sensitive to the environmental factors and detailed knowledge of the enviroment is not available all the time.
- In this case incoherent calculations are considered where the phase of the pressure associated with each ray is ignored.

$$
p^{(I)}(r, z)=\left[\sum_{j=1}^{N(r, z)}\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- Computationally efficient because the sampling in terms of rays and ray step size is less critical.

Incoherent Transmission Loss

- Ray methods are used for high frequency problems.
- At high frequencies, the pressure field is very sensitive to the environmental factors and detailed knowledge of the enviroment is not available all the time.
- In this case incoherent calculations are considered where the phase of the pressure associated with each ray is ignored.

- Computationally efficient because the sampling in terms of rays and ray sten size is less critical.

Incoherent Transmission Loss

- Ray methods are used for high frequency problems.
- At high frequencies, the pressure field is very sensitive to the environmental factors and detailed knowledge of the enviroment is not available all the time.
- In this case incoherent calculations are considered where the phase of the pressure associated with each ray is ignored.

$$
p^{(I)}(r, z)=\left[\sum_{j=1}^{N(r, z)}\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- Computationally efficient because the sampling in terms of rays and ray step size is less critical.

Incoherent Transmission Loss

- Ray methods are used for high frequency problems.
- At high frequencies, the pressure field is very sensitive to the environmental factors and detailed knowledge of the enviroment is not available all the time.
- In this case incoherent calculations are considered where the phase of the pressure associated with each ray is ignored.

$$
p^{(I)}(r, z)=\left[\sum_{j=1}^{N(r, z)}\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- Computationally efficient because the sampling in terms of rays and ray step size is less critical.

Coherent Vs Incoherent Transmission Loss

Semicoherent Transmission Loss

- Compromises between the coherent and non-coherent solutions.
- Informal and partially empirical based techniques.

$$
p^{(S)}(r, z)=\left[\sum_{j=1}^{N(r, z)} S\left(\theta_{0}\right)\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- $S\left(\theta_{0}\right)$ is a shading function which weights the amplitude of the rays as a function of its take-off angle.
- Appropriate for directional sources.

Semicoherent Transmission Loss

- Compromises between the coherent and non-coherent solutions.
- Informal and partially empirical based techniques.

- $S\left(\theta_{0}\right)$ is a shading function which weights the amplitude of the rays as a function of its take-off angle.
- Appropriate for directional sources.

Semicoherent Transmission Loss

- Compromises between the coherent and non-coherent solutions.
- Informal and partially empirical based techniques.

$$
p^{(S)}(r, z)=\left[\sum_{j=1}^{N(r, z)} S\left(\theta_{0}\right)\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- $S\left(\theta_{0}\right)$ is a shading function which weights the amplitude of the rays as a function of its take-off angle.
- Appropriate for directional sources.

Semicoherent Transmission Loss

- Compromises between the coherent and non-coherent solutions.
- Informal and partially empirical based techniques.

$$
p^{(S)}(r, z)=\left[\sum_{j=1}^{N(r, z)} S\left(\theta_{0}\right)\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- $S\left(\theta_{0}\right)$ is a shading function which weights the amplitude of the rays as a function of its take-off angle.
- Appropriate for directional sources.

Semicoherent Transmission Loss

- Compromises between the coherent and non-coherent solutions.
- Informal and partially empirical based techniques.

$$
p^{(S)}(r, z)=\left[\sum_{j=1}^{N(r, z)} S\left(\theta_{0}\right)\left|p_{j}(r, z)\right|^{2}\right]^{1 / 2}
$$

- $S\left(\theta_{0}\right)$ is a shading function which weights the amplitude of the rays as a function of its take-off angle.
- Appropriate for directional sources.

Geometric Beams

- How to calculate the field in between the rays ?
- Interpolate from the ray grid by constructing a beam around each ray.
- The amnlitude of the rays varies linearly on both side of the ray.
- The halfwidth is chosen so that the beam vanishes at the location of its neighboring ray.

Geometric Beams

- How to calculate the field in between the rays ?
- Interpolate from the ray grid by constructing a beam around each ray.
- The amplitude of the rays varies linearly on both side of the ray.
- The halfwidth is chosen so that the beam vanishes at the location of its neighboring ray.

Geometric Beams

- How to calculate the field in between the rays ?
- Interpolate from the ray grid by constructing a beam around each ray.
- The amplitude of the rays varies linearly on both side of the ray.
- The halfwidth is chosen so that the beam vanishes at the location of its neighboring ray.

Geometric Beams

- How to calculate the field in between the rays ?
- Interpolate from the ray grid by constructing a beam around each ray.
- The amplitude of the rays varies linearly on both side of the ray.
- The halfwidth is chosen so that the beam vanishes at the location of its neighboring ray.

Geometric Beams

- How to calculate the field in between the rays ?
- Interpolate from the ray grid by constructing a beam around each ray.
- The amplitude of the rays varies linearly on both side of the ray.
- The halfwidth is chosen so that the beam vanishes at the location of its neighboring ray.

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Comnlicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by

$$
c^{2}(x)|\nabla \tau|^{2}=1
$$

- Perturbed sound speed is given by.

$$
\bar{c}=c_{0}+\epsilon c_{1}+\cdots
$$

- and seeking solution of the form.

$$
\tau=\tau_{0}+\epsilon \tau_{1}+\cdots
$$

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Complicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by.

- Perturbed sound speed is given by.
- and seeking solution of the form.

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Complicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by.

- Perturbed sound speed is given by.
- and seeking solution of the form.

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Complicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by.

- Perturbed sound speed is given by.
- and seeking solution of the form.

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Complicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by.

$$
c^{2}(x)|\nabla \tau|^{2}=1
$$

- Perturbed sound speed is given by.
- and seeking solution of the form.

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Complicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by.

$$
c^{2}(x)|\nabla \tau|^{2}=1
$$

- Perturbed sound speed is given by.

$$
c=c_{0}+\epsilon c_{1}+\cdots
$$

- and seeking solution of the form.

Treatment of attenuation

- Volumetric attenuation can be included by adding an imaginary part to the sound speed.
- Complicates the process of finding the eigenrays.
- To simplify, we can neglect the imaginary part of the sound speed and add a loss corresponding to the path length of the real rays.
- Eikonal equation is given by.

$$
c^{2}(x)|\nabla \tau|^{2}=1
$$

- Perturbed sound speed is given by.

$$
c=c_{0}+\epsilon c_{1}+\cdots
$$

- and seeking solution of the form.

$$
\tau=\tau_{0}+\epsilon \tau_{1}+\cdots
$$

Treatment of attenuation

- Comparing $O(\epsilon)$ term.

$$
c_{0}^{2}\left(\nabla \tau_{0}\right)\left(\nabla \tau_{1}\right)+c_{0} c_{1}\left|\nabla \tau_{0}\right|^{2}=0
$$

- After some manipulations we have .

$$
\tau_{1}(s)=-\int_{0}^{s} \frac{c_{1}\left(s^{\prime}\right)}{c_{0}^{2}\left(s^{\prime}\right)} d s^{\prime}
$$

- If the perturbation is due to loss α, it introduces an imaginary part in the sound speed.

- Putting this value the complete pressure field becomes.

$$
p(s)=\frac{1}{4 \pi}\left|\frac{c(s) \cos \theta_{0}}{c(0) J(s)}\right|^{1 / 2} e^{i \omega \int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime}} e^{-i \int_{0}^{s} \alpha\left(s^{\prime}\right) d s^{\prime}}
$$

Treatment of attenuation

- Comparing $O(\epsilon)$ term.

$$
c_{0}^{2}\left(\nabla \tau_{0}\right)\left(\nabla \tau_{1}\right)+c_{0} c_{1}\left|\nabla \tau_{0}\right|^{2}=0
$$

- After some manipulations we have

- If the perturbation is due to loss α, it introduces an imaginary part in the sound speed.

- Putting this value the complete pressure field becomes.

Treatment of attenuation

- Comparing $O(\epsilon)$ term.

$$
c_{0}^{2}\left(\nabla \tau_{0}\right)\left(\nabla \tau_{1}\right)+c_{0} c_{1}\left|\nabla \tau_{0}\right|^{2}=0
$$

- After some manipulations we have .

$$
\tau_{1}(s)=-\int_{0}^{s} \frac{c_{1}\left(s^{\prime}\right)}{c_{0}^{2}\left(s^{\prime}\right)} d s^{\prime}
$$

- If the perturbation is due to loss α, it introduces an imaginary part in the sound speed.

- Putting this value the complete pressure field becomes.

Treatment of attenuation

- Comparing $O(\epsilon)$ term.

$$
c_{0}^{2}\left(\nabla \tau_{0}\right)\left(\nabla \tau_{1}\right)+c_{0} c_{1}\left|\nabla \tau_{0}\right|^{2}=0
$$

- After some manipulations we have .

$$
\tau_{1}(s)=-\int_{0}^{s} \frac{c_{1}\left(s^{\prime}\right)}{c_{0}^{2}\left(s^{\prime}\right)} d s^{\prime}
$$

- If the perturbation is due to loss α, it introduces an imaginary part in the sound speed.

$$
i c_{i} \simeq-i \alpha \frac{\left|c_{r}^{2}\right|}{\omega}
$$

- Putting this value the complete pressure field becomes.

Treatment of attenuation

- Comparing $O(\epsilon)$ term.

$$
c_{0}^{2}\left(\nabla \tau_{0}\right)\left(\nabla \tau_{1}\right)+c_{0} c_{1}\left|\nabla \tau_{0}\right|^{2}=0
$$

- After some manipulations we have .

$$
\tau_{1}(s)=-\int_{0}^{s} \frac{c_{1}\left(s^{\prime}\right)}{c_{0}^{2}\left(s^{\prime}\right)} d s^{\prime}
$$

- If the perturbation is due to loss α, it introduces an imaginary part in the sound speed.

$$
i c_{i} \simeq-i \alpha \frac{\left|c_{r}^{2}\right|}{\omega}
$$

- Putting this value the complete pressure field becomes.

$$
p(s)=\frac{1}{4 \pi}\left|\frac{c(s) \cos \theta_{0}}{c(0) J(s)}\right|^{1 / 2} e^{i \omega \int_{0}^{s} \frac{1}{c\left(s^{\prime}\right)} d s^{\prime}} e^{-i \int_{0}^{s} \alpha\left(s^{\prime}\right) d s^{\prime}}
$$

WKB Method

- Application of ray theory to one dimensional problems.
- The derivation of WKB approximation proceeds the same way except all vectors equations becomes scalar with single variable z.

$$
p(z)=e^{i \omega \tau(z)} \sum_{j=0}^{\infty} \frac{A_{j}(z)}{(i \omega)^{j}}
$$

- Similarly the eikonal and transport equations become.

$$
\begin{aligned}
& \left|\frac{d \tau}{d z}\right|^{2}=\frac{k_{z}^{2}(z)}{\omega^{2}} \\
& 2 \frac{d \tau}{d z} \frac{d A_{0}}{d z}+\frac{d^{2} \tau}{d z^{2}} A_{0}=0 \\
& 2 \frac{d \tau}{d z} \frac{d A_{j}}{d z}+\frac{d^{2} \tau}{d z^{2}} A_{j}=-\frac{d^{2} A_{j-1}}{d z^{2}}, j=1,2, \ldots
\end{aligned}
$$

WKB Method

- Application of ray theory to one dimensional problems.
- The derivation of WKB approximation proceeds the same way except all vectors equations becomes scalar with single variable z.

- Similarly the eikonal and transport equations become.

WKB Method

- Application of ray theory to one dimensional problems.
- The derivation of WKB approximation proceeds the same way except all vectors equations becomes scalar with single variable z.

$$
p(z)=e^{i \omega \tau(z)} \sum_{j=0}^{\infty} \frac{A_{j}(z)}{(i \omega)^{j}}
$$

- Similarly the eikonal and transport equations become.

WKB Method

- Application of ray theory to one dimensional problems.
- The derivation of WKB approximation proceeds the same way except all vectors equations becomes scalar with single variable z.

$$
p(z)=e^{i \omega \tau(z)} \sum_{j=0}^{\infty} \frac{A_{j}(z)}{(i \omega)^{j}}
$$

- Similarly the eikonal and transport equations become.

$$
\begin{aligned}
& \left|\frac{d \tau}{d z}\right|^{2}=\frac{k_{z}^{2}(z)}{\omega^{2}} \\
& 2 \frac{d \tau}{d z} \frac{d A_{0}}{d z}+\frac{d^{2} \tau}{d z^{2}} A_{0}=0 \\
& 2 \frac{d \tau}{d z} \frac{d A_{j}}{d z}+\frac{d^{2} \tau}{d z^{2}} A_{j}=-\frac{d^{2} A_{j-1}}{d z^{2}}, \quad j=1,2, \ldots
\end{aligned}
$$

WKB Method

- Solving the eikonal equation we have

$$
\tau(z)= \pm \frac{1}{\omega} \int k_{z}(z) d z
$$

- Using this result, the first transport equation becomes

$$
2 k_{z}(z) \frac{d A_{0}}{d z}+\frac{d k_{z}}{d z} A_{0}=0
$$

- Implying

$$
A_{0}(z)=\frac{B}{\sqrt{k_{z}(z)}}
$$

- Putting is all together we have the pressure field,

$$
p\left(k_{r}, z\right) \simeq \frac{B e^{ \pm \int_{-z}^{z} k_{z}\left(z^{\prime}\right) d z^{\prime}}}{\sqrt{k_{z}(z)}}
$$

- where B is an arbitrary constant.

WKB Method

- Solving the eikonal equation we have

$$
\tau(z)= \pm \frac{1}{\omega} \int k_{z}(z) d z
$$

- Using this result, the first transport equation becomes

- Implying

- Putting is all together we have the pressure field,

- where B is an arbitrary constant.

WKB Method

- Solving the eikonal equation we have

$$
\tau(z)= \pm \frac{1}{\omega} \int k_{z}(z) d z
$$

- Using this result, the first transport equation becomes

$$
2 k_{z}(z) \frac{d A_{0}}{d z}+\frac{d k_{z}}{d z} A_{0}=0
$$

- Implying

- Putting is all together we have the pressure field,

- where B is an arbitrary constant.

WKB Method

- Solving the eikonal equation we have

$$
\tau(z)= \pm \frac{1}{\omega} \int k_{z}(z) d z
$$

- Using this result, the first transport equation becomes

$$
2 k_{z}(z) \frac{d A_{0}}{d z}+\frac{d k_{z}}{d z} A_{0}=0
$$

- Implying

$$
A_{0}(z)=\frac{B}{\sqrt{k_{z}(z)}}
$$

- Putting is all together we have the pressure field,

WKB Method

- Solving the eikonal equation we have

$$
\tau(z)= \pm \frac{1}{\omega} \int k_{z}(z) d z
$$

- Using this result, the first transport equation becomes

$$
2 k_{z}(z) \frac{d A_{0}}{d z}+\frac{d k_{z}}{d z} A_{0}=0
$$

- Implying

$$
A_{0}(z)=\frac{B}{\sqrt{k_{z}(z)}}
$$

- Putting is all together we have the pressure field,

$$
p\left(k_{r}, z\right) \simeq \frac{B e^{ \pm \int_{z_{0}}^{z} k_{z}\left(z^{\prime}\right) d z^{\prime}}}{\sqrt{k_{z}(z)}}
$$

- where B is an arbitrary constant.

WKB Method

- Solving the eikonal equation we have

$$
\tau(z)= \pm \frac{1}{\omega} \int k_{z}(z) d z
$$

- Using this result, the first transport equation becomes

$$
2 k_{z}(z) \frac{d A_{0}}{d z}+\frac{d k_{z}}{d z} A_{0}=0
$$

- Implying

$$
A_{0}(z)=\frac{B}{\sqrt{k_{z}(z)}}
$$

- Putting is all together we have the pressure field,

$$
p\left(k_{r}, z\right) \simeq \frac{B e^{ \pm \int_{z_{0}}^{z} k_{z}\left(z^{\prime}\right) d z^{\prime}}}{\sqrt{k_{z}(z)}}
$$

- where B is an arbitrary constant.

WKB Method

- WKB solution breaks down in the vicinity of the turning points.
- 2D ray result gives the field at a given point in terms of contribution of a finite number of eigenrays contribution.
- WKB solution represents a single spectral component and the field at any point is obtained by summing up infinite number of contributions.
- Spectral integral is asymptotically dominated by particular points in the k_{r} spectrum.
- Take-off angle of eigen rays is different for different source receiver positions, similarly different part of the spectral integral produce dominant contribution depending on the source recevier depths.

WKB Method

- WKB solution breaks down in the vicinity of the turning points.
- 2D ray result gives the field at a given point in terms of contribution of a finite number of eigenrays contribution.
- WKB solution represents a single spectral component and the field at any point is obtained by summing up infinite number of contributions.
- Spectral integral is asymptotically dominated by particular points in the k_{r} spectrum.
- Take-off angle of eigen rays is different for different source receiver positions, similarly different part of the spectral integral produce dominant contribution depending on the source recevier depths.

WKB Method

- WKB solution breaks down in the vicinity of the turning points.
- 2 D ray result gives the field at a given point in terms of contribution of a finite number of eigenrays contribution.
- WKB solution represents a single spectral component and the field at any point is obtained by summing up infinite number of contributions.
- Spectral integral is asymptotically dominated by particular points in the k_{r} spectrum.
- Take-off angle of eigen rays is different for different source receiver positions, similarly different part of the spectral integral produce dominant contribution depending on the source recevier depths.

WKB Method

- WKB solution breaks down in the vicinity of the turning points.
- 2 D ray result gives the field at a given point in terms of contribution of a finite number of eigenrays contribution.
- WKB solution represents a single spectral component and the field at any point is obtained by summing up infinite number of contributions.
- Spectral integral is asymptotically dominated by particular points in the k_{r} spectrum.
- Take-off angle of eigen rays is different for different source receiver positions, similarly different part of the spectral integral produce dominant contribution depending on the source recevier depths.

WKB Method

- WKB solution breaks down in the vicinity of the turning points.
- 2 D ray result gives the field at a given point in terms of contribution of a finite number of eigenrays contribution.
- WKB solution represents a single spectral component and the field at any point is obtained by summing up infinite number of contributions.
- Spectral integral is asymptotically dominated by particular points in the k_{r} spectrum.
- Take-off angle of eigen rays is different for different source receiver positions, similarly different part of the spectral integral produce dominant contribution depending on the source recevier depths.

WKB Method

- WKB solution breaks down in the vicinity of the turning points.
- 2 D ray result gives the field at a given point in terms of contribution of a finite number of eigenrays contribution.
- WKB solution represents a single spectral component and the field at any point is obtained by summing up infinite number of contributions.
- Spectral integral is asymptotically dominated by particular points in the k_{r} spectrum.
- Take-off angle of eigen rays is different for different source receiver positions, similarly different part of the spectral integral produce dominant contribution depending on the source recevier depths.

Introduction

- Numerical implementation of the integral transform technique for horizontally stratified media.
- The final solution is in the form of spectral wavenumber integral.
- This technique provides the wave field in each layer in terms of unknown coefficients.
- These coefficients are obtained by matching boundry conditions simultaneously at all interface.

Introduction

- Numerical implementation of the integral transform technique for horizontally stratified media.
- The final solution is in the form of spectral wavenumber integral.
- This technique provides the wave field in each layer in terms of unknown coefficients.
- These coefficients are obtained by matching boundry conditions simultaneously at all interface.

Introduction

- Numerical implementation of the integral transform technique for horizontally stratified media.
- The final solution is in the form of spectral wavenumber integral.
- This technique provides the wave field in each layer in terms of unknown coefficients.
- These coefficients are obtained by matching boundry conditions simultaneously at all interface.

Introduction

- Numerical implementation of the integral transform technique for horizontally stratified media.
- The final solution is in the form of spectral wavenumber integral.
- This technique provides the wave field in each layer in terms of unknown coefficients.
- These coefficients are obtained by matching boundry conditions simultaneously at all interface.

Introduction

- Numerical implementation of the integral transform technique for horizontally stratified media.
- The final solution is in the form of spectral wavenumber integral.
- This technique provides the wave field in each layer in terms of unknown coefficients.
- These coefficients are obtained by matching boundry conditions simultaneously at all interface.

Integral Transform solution

- Considering cylinderical coordinate system (r, φ, z) with z-axis passing through the source, the field is independent of the azimuthal angle φ.
- The acoustic field in layer m containing the source can be expressed in terms of displacement potential $\psi_{m}(r, z)$ satisfying the Helmholtz equation.

$$
\left[\nabla^{2}+k_{m}^{2}(z)\right] \psi_{m}(r, z)=f_{s}(z, \omega) \frac{\delta(r)}{2 \pi r} \text { where } k_{m}(z)=\frac{\omega}{c(z)}
$$

- The solution of the wave equation will be a combination of green functions.

$$
\psi_{m}\left(k_{r}, z\right)=\widehat{\psi_{m}}\left(k_{r}, z\right)+A_{m}^{+}\left(k_{r}\right) \psi_{m}^{+}\left(k_{r}, z\right)+A_{m}^{-}\left(k_{r}\right) \psi_{m}^{-}\left(k_{r}, z\right)
$$

Integral Transform solution

- Considering cylinderical coordinate system (r, φ, z) with z-axis passing through the source, the field is independent of the azimuthal angle φ.
- The acoustic field in layer m containing the source can be expressed in terms of displacement potential $\psi_{m}(r, z)$ satisfying the Helmholtz equation.

where

- The solution of the wave equation will be a combination of green functions.

Integral Transform solution

- Considering cylinderical coordinate system (r, φ, z) with z-axis passing through the source, the field is independent of the azimuthal angle φ.
- The acoustic field in layer m containing the source can be expressed in terms of displacement potential $\psi_{m}(r, z)$ satisfying the Helmholtz equation.

$$
\left[\nabla^{2}+k_{m}^{2}(z)\right] \psi_{m}(r, z)=f_{s}(z, \omega) \frac{\delta(r)}{2 \pi r} \text { where } k_{m}(z)=\frac{\omega}{c(z)}
$$

- The solution of the wave equation will be a combination of green functions.

Integral Transform solution

- Considering cylinderical coordinate system (r, φ, z) with z-axis passing through the source, the field is independent of the azimuthal angle φ.
- The acoustic field in layer m containing the source can be expressed in terms of displacement potential $\psi_{m}(r, z)$ satisfying the Helmholtz equation.

$$
\left[\nabla^{2}+k_{m}^{2}(z)\right] \psi_{m}(r, z)=f_{s}(z, \omega) \frac{\delta(r)}{2 \pi r} \text { where } k_{m}(z)=\frac{\omega}{c(z)}
$$

- The solution of the wave equation will be a combination of green functions.

$$
\psi_{m}\left(k_{r}, z\right)=\widehat{\psi_{m}}\left(k_{r}, z\right)+A_{m}^{+}\left(k_{r}\right) \psi_{m}^{+}\left(k_{r}, z\right)+A_{m}^{-}\left(k_{r}\right) \psi_{m}^{-}\left(k_{r}, z\right)
$$

Integral Transform solution

- $A_{m}^{+}\left(k_{r}\right)$ and $A_{m}^{-}\left(k_{r}\right)$ can be found from the boundary conditions at the interfaces.
- $\psi_{m}\left(k_{r}, z\right)$ is the field produced by the source in the absence of boundaries.
- The total field at the angular frequency ω is found by evaluating the inverse Hankel transform.
- In wavenumber integration implementation, the solution of the wave equation in boundry less case is evaluated analytically unlike normal mode technique.

Integral Transform solution

- $A_{m}^{+}\left(k_{r}\right)$ and $A_{m}^{-}\left(k_{r}\right)$ can be found from the boundary conditions at the interfaces.
- $\psi_{m}\left(k_{r}, z\right)$ is the field produced by the source in the absence of boundaries.
- The total feld at the angular frequency ω is found by evaluating the inverse Hankel transform.
- In wavenumber integration implementation, the solution of the wave equation in boundry less case is evaluated analytically unlike normal mode technique.

Integral Transform solution

- $A_{m}^{+}\left(k_{r}\right)$ and $A_{m}^{-}\left(k_{r}\right)$ can be found from the boundary conditions at the interfaces.
- $\widehat{\psi_{m}}\left(k_{r}, z\right)$ is the field produced by the source in the absence of boundaries.
- The total field at the angular frequency ω is found by evaluating the inverse Hankel transform.
- In wavenumber integration implementation, the solution of the wave equation in boundry less case is evaluated analytically unlike normal mode technique.

Integral Transform solution

- $A_{m}^{+}\left(k_{r}\right)$ and $A_{m}^{-}\left(k_{r}\right)$ can be found from the boundary conditions at the interfaces.
- $\widehat{\psi_{m}}\left(k_{r}, z\right)$ is the field produced by the source in the absence of boundaries.
- The total field at the angular frequency ω is found by evaluating the inverse Hankel transform.
- In wavenumber integration implementation, the solution of the wave equation in boundry less case is evaluated analytically unlike normal mode technique.

Integral Transform solution

- $A_{m}^{+}\left(k_{r}\right)$ and $A_{m}^{-}\left(k_{r}\right)$ can be found from the boundary conditions at the interfaces.
- $\widehat{\psi_{m}}\left(k_{r}, z\right)$ is the field produced by the source in the absence of boundaries.
- The total field at the angular frequency ω is found by evaluating the inverse Hankel transform.
- In wavenumber integration implementation, the solution of the wave equation in boundry less case is evaluated analytically unlike normal mode technique.

Homogeneous Fluid Layers

- In the absence of a source, the total field can be represented as a combination of an upgoing and downgoing canonical wave.

$$
\phi(r, z)=\int_{0}^{\infty}\left[A^{-} e^{-i k_{z} z}+A^{+} e^{-i k_{z} z}\right] J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- To evaluate the boundry conditions vertical displacement $w(r, z)$ and normal stress $\sigma_{z z}$ is used.

$$
w(r, z)=\frac{\partial \phi}{\partial z} \quad \sigma_{z z}=-\rho \omega^{2} \phi(r, z)
$$

- In the presence of a source we have to add the contribution of $\phi\left(k_{r}, z\right)$.

$$
\widehat{\phi}\left(k_{r}, z\right)=\frac{S_{\omega}}{4 \pi} \frac{e^{i k_{e}|z-z|}}{i k_{z}} J_{0}\left(k_{r} r\right) d k_{r}
$$

Homogeneous Fluid Layers

- In the absence of a source, the total field can be represented as a combination of an upgoing and downgoing canonical wave.

$$
\phi(r, z)=\int_{0}^{\infty}\left[A^{-} e^{-i k_{z} z}+A^{+} e^{-i k_{z} z}\right] J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- To evaluate the boundry conditions vertical displacement $w(r, z)$ and normal stress σ_{77} is used.

- In the presence of a source we have to add the contribution of $\widehat{\phi}\left(k_{r}, z\right)$.

Homogeneous Fluid Layers

- In the absence of a source, the total field can be represented as a combination of an upgoing and downgoing canonical wave.

$$
\phi(r, z)=\int_{0}^{\infty}\left[A^{-} e^{-i k_{z} z}+A^{+} e^{-i k_{z} z}\right] J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- To evaluate the boundry conditions vertical displacement $w(r, z)$ and normal stress $\sigma_{z z}$ is used.

$$
w(r, z)=\frac{\partial \phi}{\partial z} \quad \sigma_{z z}=-\rho \omega^{2} \phi(r, z)
$$

- In the presence of a source we have to add the contribution of $\widehat{\phi}\left(k_{r}, z\right)$.

Homogeneous Fluid Layers

- In the absence of a source, the total field can be represented as a combination of an upgoing and downgoing canonical wave.

$$
\phi(r, z)=\int_{0}^{\infty}\left[A^{-} e^{-i k_{z} z}+A^{+} e^{-i k_{z} z}\right] J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- To evaluate the boundry conditions vertical displacement $w(r, z)$ and normal stress $\sigma_{z z}$ is used.

$$
w(r, z)=\frac{\partial \phi}{\partial z} \quad \sigma_{z z}=-\rho \omega^{2} \phi(r, z)
$$

- In the presence of a source we have to add the contribution of $\widehat{\phi}\left(k_{r}, z\right)$.

$$
\widehat{\phi}\left(k_{r}, z\right)=\frac{S_{\omega}}{4 \pi} \frac{e^{i k_{z}\left|z-z_{s}\right|}}{i k_{z}} J_{0}\left(k_{r} r\right) d k_{r}
$$

