Computational Ocean Acoustics (Wave Propagation Theory)

SALMAN IJAZ SIDDIQUI

Department of Electronics and Telecommunication, Norwegian University of Science and Technology (NTNU). NO-7491 Trondheim, Norway.

0 NTNU

March 26, 2015

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Presentation Outline

- Wave Equation.
- Homogeneous Media.
- Layered Media and waveguides.
- Reflection and transmission co-efficients.
- Ideal Fluid waveguide.
- Deep Ocean waveguide and WKB approximation.

Wave Equation

- Propagation of the acoustic wave in the fluid is governed by the wave equation.
- Wave equation can be formulated by three equations:
- Equation of continuity
- Euler's equation
- Equation of state

Wave Equation

- Propagation of the acoustic wave in the fluid is governed by the wave equation.
- Wave equation can be formulated by three equations:
- Equation of continuity
- Euler's equation
- Equation of state

Wave Equation

- Propagation of the acoustic wave in the fluid is governed by the wave equation.
- Wave equation can be formulated by three equations:
- Equation of continuity
- Euler's equation
- Equation of state

Wave Equation

- Propagation of the acoustic wave in the fluid is governed by the wave equation.
- Wave equation can be formulated by three equations:
- Equation of continuity
- Euler's equation
- Equation of state

Wave Equation

- Propagation of the acoustic wave in the fluid is governed by the wave equation.
- Wave equation can be formulated by three equations:
- Equation of continuity
- Euler's equation
- Equation of state

Wave Equation

- Propagation of the acoustic wave in the fluid is governed by the wave equation.
- Wave equation can be formulated by three equations:
- Equation of continuity
- Euler's equation
- Equation of state

Wave equation

- Continuity Equation: Net change in the mass due to its flow through an element is equal to the changes in the density of the mass of element.

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho v)
$$

- Euler's Equation: Force equals mass time acceleration.

$$
\rho\left[\frac{\partial v}{\partial t}+v \cdot \nabla v\right]=-\nabla p
$$

- State Equation: Relationship between the change in density and a change in pressure.

$$
p=p(\rho, S) \text { where } S \text { is the entropy }
$$

Wave equation

- Continuity Equation: Net change in the mass due to its flow through an element is equal to the changes in the density of the mass of element.

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho v)
$$

- Euler's Equation: Force equals mass time acceleration.

- State Equation: Relationship between the change in density and a change in pressure.
$p=p(\rho, S)$ where S is the entropy

Wave equation

- Continuity Equation: Net change in the mass due to its flow through an element is equal to the changes in the density of the mass of element.

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho v)
$$

- Euler's Equation: Force equals mass time acceleration.

$$
\rho\left[\frac{\partial v}{\partial t}+v \cdot \nabla v\right]=-\nabla p
$$

- State Equation: Relationship between the change in density and a change in pressure.
$p=p(\rho, S)$ where S is the entropy

Wave equation

- Continuity Equation: Net change in the mass due to its flow through an element is equal to the changes in the density of the mass of element.

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho v)
$$

- Euler's Equation: Force equals mass time acceleration.

$$
\rho\left[\frac{\partial v}{\partial t}+v \cdot \nabla v\right]=-\nabla p
$$

- State Equation: Relationship between the change in density and a change in pressure.

$$
p=p(\rho, S) \text { where } S \text { is the entropy }
$$

Linear Wave equation

- Assuming that each physical quantity is a function of a steady-state, time-independent value and a small fluctuation term

$$
\begin{aligned}
p & =p_{0}+p^{\prime} \\
\rho & =\rho_{0}+\rho^{\prime} \\
v & =v_{0}+v^{\prime}
\end{aligned}
$$

- The linearized equations are

$$
\begin{aligned}
& \frac{\partial p^{\prime}}{\partial t}=-\nabla \cdot\left(\rho_{0} v\right) \\
& \frac{\partial v}{\partial t}=-\frac{1}{\rho_{0}} \nabla p^{\prime}(p) \\
& \frac{\partial p^{\prime}}{\partial t}=c^{2}\left(\frac{\partial p^{\prime}}{\partial t}+v \cdot \nabla \rho_{0}\right)
\end{aligned}
$$

Linear Wave equation

- Assuming that each physical quantity is a function of a steady-state, time-independent value and a small fluctuation term

$$
\begin{aligned}
p & =p_{0}+p^{\prime} \\
\rho & =\rho_{0}+\rho^{\prime} \\
v & =v_{0}+v^{\prime}
\end{aligned}
$$

- The linearized equations are

Linear Wave equation

- Assuming that each physical quantity is a function of a steady-state, time-independent value and a small fluctuation term

$$
\begin{aligned}
p & =p_{0}+p^{\prime} \\
\rho & =\rho_{0}+\rho^{\prime} \\
v & =v_{0}+v^{\prime}
\end{aligned}
$$

- The linearized equations are

$$
\begin{aligned}
\frac{\partial \rho^{\prime}}{\partial t} & =-\nabla \cdot\left(\rho_{0} v\right) \\
\frac{\partial v}{\partial t} & =-\frac{1}{\rho_{0}} \nabla p^{\prime}(\rho) \\
\frac{\partial p^{\prime}}{\partial t} & =c^{2}\left(\frac{\partial \rho^{\prime}}{\partial t}+v \cdot \nabla \rho_{0}\right)
\end{aligned}
$$

Different forms of Wave equation

- Wave equation for pressure

$$
\rho \nabla \cdot\left(\frac{1}{\rho} \nabla p\right)-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

- Wave equation for particle velocity

$$
\frac{1}{\rho} \nabla\left(\rho c^{2} \nabla \cdot v\right)-\frac{\partial^{2} v}{\partial t^{2}}=0
$$

- Wave equation for velocity potential $(v=\nabla \phi)$

$$
\nabla^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0
$$

Different forms of Wave equation

- Wave equation for pressure

$$
\rho \nabla \cdot\left(\frac{1}{\rho} \nabla p\right)-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

- Wave equation for particle velocity

- Wave equation for velocity potential $(v=\nabla \phi)$

Different forms of Wave equation

- Wave equation for pressure

$$
\rho \nabla \cdot\left(\frac{1}{\rho} \nabla p\right)-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

- Wave equation for particle velocity

$$
\frac{1}{\rho} \nabla\left(\rho c^{2} \nabla \cdot v\right)-\frac{\partial^{2} v}{\partial t^{2}}=0
$$

- Wave equation for velocity potential $(v=\nabla \phi)$

Different forms of Wave equation

- Wave equation for pressure

$$
\rho \nabla \cdot\left(\frac{1}{\rho} \nabla p\right)-\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}=0
$$

- Wave equation for particle velocity

$$
\frac{1}{\rho} \nabla\left(\rho c^{2} \nabla \cdot v\right)-\frac{\partial^{2} v}{\partial t^{2}}=0
$$

- Wave equation for velocity potential $(v=\nabla \phi)$

$$
\nabla^{2} \phi-\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0
$$

Different forms of Wave equation

- Wave equation for Displacement potential $(u=\nabla \psi)$

$$
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

- Wave equation in the presence of a source

$$
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=f(r, t)
$$

Different forms of Wave equation

- Wave equation for Displacement potential $(u=\nabla \psi)$

$$
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

- Wave equation in the presence of a source

Different forms of Wave equation

- Wave equation for Displacement potential $(u=\nabla \psi)$

$$
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$

- Wave equation in the presence of a source

$$
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=f(r, t)
$$

Helmholtz equation

- Wave equation in the frequency domain.
- Obtained by taking the Fourier transform of the time domain wave equation.

$$
\left[\nabla^{2}+k^{2}(r)\right] \psi(r, \omega)=f(r, \omega) \quad \text { where } \quad k(r)=\frac{\omega}{c(r)}
$$

- Not suitable to broadband applications due to the complexity of obtaining the inverse fourier transform.

Helmholtz equation

- Wave equation in the frequency domain.
- Obtained by taking the Fourier transform of the time domain wave equation.

$$
\left[\nabla^{2}+k^{2}(r)\right] \psi(r, \omega)=f(r, \omega) \quad \text { where } \quad k(r)=\frac{\omega}{c(r)}
$$

- Not suitable to broadband applications due to the complexity of obtaining the inverse fourier transform.

Helmholtz equation

- Wave equation in the frequency domain.
- Obtained by taking the Fourier transform of the time domain wave equation.

$$
\left[\nabla^{2}+k^{2}(r)\right] \psi(r, \omega)=f(r, \omega) \quad \text { where } \quad k(r)=\frac{\omega}{c(r)}
$$

- Not suitable to broadband applications due to the complexity of obtaining the inverse fourier transform.

Helmholtz equation

- Wave equation in the frequency domain.
- Obtained by taking the Fourier transform of the time domain wave equation.

$$
\left[\nabla^{2}+k^{2}(r)\right] \psi(r, \omega)=f(r, \omega) \quad \text { where } \quad k(r)=\frac{\omega}{c(r)}
$$

- Not suitable to broadband applications due to the complexity of obtaining the inverse fourier transform.

Solution of the wave equation

- Three dimensional, elliptical partial differential equation.
- No universal solution available.
- The solution depends on the following factors:
- Dimensionality of the problem
- Sound speed variations $c(r)$
- Boundary conditions
- Source-receiver geometry
- frequency and bandwidth
- Optimum approach is the hybridization of analytical and numerical methods.

Solution of the wave equation

- Three dimensional, elliptical partial differential equation.
- No universal solution available.
- The solution depends on the following factors:
- Dimensionality of the problem
- Sound speed variations $c(r)$
- Boundary conditions
- Source-receiver geometry
- frequency and bandwidth
- Optimum approach is the hybridization of analytical and numerical methods.

Solution of the wave equation

- Three dimensional, elliptical partial differential equation.
- No universal solution available.
- The solution depends on the following factors:
- Dimensionality of the problem
- Sound speed variations $c(r)$
- Boundary conditions
- Source-receiver geometry
- frequency and bandwidth
- Optimum approach is the hybridization of analytical and numerical methods.

Solution of the wave equation

- Three dimensional, elliptical partial differential equation.
- No universal solution available.
- The solution depends on the following factors:
- Dimensionality of the problem
- Sound speed variations $c(r)$
- Boundary conditions
- Source-receiver geometry
- frequency and bandwidth
- Optimum approach is the hybridization of analytical and numerical methods.

Solution of the wave equation

- Three dimensional, elliptical partial differential equation.
- No universal solution available.
- The solution depends on the following factors:
- Dimensionality of the problem
- Sound speed variations $c(r)$
- Boundary conditions
- Source-receiver geometry
- frequency and bandwidth
- Optimum approach is the hybridization of analytical and numerical methods.

Wave equation solution in different co-ordinate systems

- Cartesian coordinates

$$
\psi(x, y, z)=\left\{\begin{array}{l}
A e^{i k \cdot r} \\
B e^{-i k \cdot r}
\end{array}\right.
$$

where $k=\left(k_{x}, k_{y}, k_{z}\right)$ is the wave vector and A, B are arbitrary amplitudes

Wave equation solution in different co-ordinate systems

- Cartesian coordinates

$$
\begin{aligned}
& \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& \psi(x, y, z)=\left\{\begin{array}{l}
A e^{i k \cdot r} \\
B e^{-i k \cdot r}
\end{array}\right.
\end{aligned}
$$

where $k=\left(k_{x}, k_{y}, k_{z}\right)$ is the wave vector and A, B are arbitrary amplitudes

Wave equation solution in different co-ordinate systems

- Cylindrical coordinates

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

- For uniform line source, the solution of the wave equations is

$$
\psi(r)=\left\{\begin{array}{l}
C H_{0}^{(1)}(k r) \\
D H_{0}^{(2)}(k r)
\end{array}\right.
$$

where $H_{0}^{(1)}, H_{0}^{(2)}$ are the hankel functions which can be represented in the asymptotic form as

$$
\begin{aligned}
H_{0}^{(1)}(k r) & \simeq \sqrt{\frac{2}{\pi k r}} e^{i(k r-\pi / 4)} \\
H_{0}^{(2)}(k r) & \simeq \sqrt{\frac{2}{\pi k r}} e^{-i(k r-\pi / 4)}
\end{aligned}
$$

Wave equation solution in different co-ordinate systems

- Cylindrical coordinates

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

- For uniform line source, the solution of the wave equations is

where $H_{0}^{(1)}, H_{0}^{(2)}$ are the hankel functions which can be represented in the asymptotic form as

Wave equation solution in different co-ordinate systems

- Cylindrical coordinates

$$
\nabla^{2}=\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

- For uniform line source, the solution of the wave equations is

$$
\psi(r)=\left\{\begin{array}{l}
C H_{0}^{(1)}(k r) \\
D H_{0}^{(2)}(k r)
\end{array}\right.
$$

where $H_{0}^{(1)}, H_{0}^{(2)}$ are the hankel functions which can be represented in the asymptotic form as

$$
\begin{aligned}
H_{0}^{(1)}(k r) & \simeq \sqrt{\frac{2}{\pi k r}} e^{i(k r-\pi / 4)} \\
H_{0}^{(2)}(k r) & \simeq \sqrt{\frac{2}{\pi k r}} e^{-i(k r-\pi / 4)}
\end{aligned}
$$

Wave equation solution in different co-ordinate systems

- Spherical Co-ordinates

$\psi(r)=\left\{\begin{array}{l}(A / r) e^{i k \cdot r} \\ (B / r) e^{-i k \cdot r}\end{array}\right.$
where k is the wave vector and A, B are arbitrary amplitudes

Wave equation solution in different co-ordinate systems

- Spherical Co-ordinates

$$
\begin{gathered}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \\
\psi(r)=\left\{\begin{array}{l}
(A / r) e^{i k \cdot r} \\
(B / r) e^{-i k \cdot r}
\end{array}\right.
\end{gathered}
$$

where k is the wave vector and A, B are arbitrary amplitudes

Source in an unbounded medium

- Assuming an acoustic field in a homogeneous fluid due to a small sphere of radius a with a surface displacement given as

$$
u_{r}(t, a)=U(t)
$$

- In the homogeneous fluid, the field will be omni-directional, with the radial displacement

$$
u_{r}=\frac{\partial \psi(r, t)}{\partial r}
$$

Source in an unbounded medium

- Assuming an acoustic field in a homogeneous fluid due to a small sphere of radius a with a surface displacement given as

$$
u_{r}(t, a)=U(t)
$$

- In the homogeneous fluid, the field will be omni-directional, with the radial displacement

Source in an unbounded medium

- Assuming an acoustic field in a homogeneous fluid due to a small sphere of radius a with a surface displacement given as

$$
u_{r}(t, a)=U(t)
$$

- In the homogeneous fluid, the field will be omni-directional, with the radial displacement

$$
u_{r}=\frac{\partial \psi(r, t)}{\partial r}
$$

Source in an unbounded medium

- where ψ is the displacement potential.
- Taking the fourier transform and applying the boundary condition, the solution the displacement field becomes

$$
\psi(r)=-S_{\omega} \frac{e^{i k r}}{4 \pi r}
$$

where S_{ω} is the source strength.

Source in an unbounded medium

- where ψ is the displacement potential.
- Taking the fourier transform and applying the boundary condition, the solution the displacement field becomes

where S_{ω} is the source strength.

Source in an unbounded medium

- where ψ is the displacement potential.
- Taking the fourier transform and applying the boundary condition, the solution the displacement field becomes

$$
\psi(r)=-S_{\omega} \frac{e^{i k r}}{4 \pi r}
$$

where S_{ω} is the source strength.

Green Function

- Green function can be defined as the behavior of the channel. In frequency domain it is given by

$$
g_{\omega}\left(r, r_{0}\right)=\frac{e^{i k R}}{4 \pi R} \quad \text { where } \quad R=\left|r-r_{0}\right|
$$

- Green function satisfies the inhomogeneous Helmholtz equation,

$$
\left[\nabla^{2}+k^{2}\right] g_{\omega}\left(r, r_{0}\right)=-\delta\left(r-r_{0}\right)
$$

- The green function for the time domain wave equation is obtained by taking the Fourier transform

$$
g_{t}\left(r, r_{0}\right)=\frac{\delta(R / c-t)}{4 \pi R}
$$

Green Function

- Green function can be defined as the behavior of the channel. In frequency domain it is given by

$$
g_{\omega}\left(r, r_{0}\right)=\frac{e^{i k R}}{4 \pi R} \quad \text { where } \quad R=\left|r-r_{0}\right|
$$

- Green function satisfies the inhomogeneous Helmholtz equation,

$$
\left[\nabla^{2}+k^{2}\right] g_{\omega}\left(r_{0}, r_{0}\right)=-\delta\left(r-r_{0}\right)
$$

- The green function for the time domain wave equation is obtained by taking the Fourier transform

Green Function

- Green function can be defined as the behavior of the channel. In frequency domain it is given by

$$
g_{\omega}\left(r, r_{0}\right)=\frac{e^{i k R}}{4 \pi R} \quad \text { where } \quad R=\left|r-r_{0}\right|
$$

- Green function satisfies the inhomogeneous Helmholtz equation,

$$
\left[\nabla^{2}+k^{2}\right] g_{\omega}\left(r, r_{0}\right)=-\delta\left(r-r_{0}\right)
$$

- The green function for the time domain wave equation is obtained by taking the Fourier transform

Green Function

- Green function can be defined as the behavior of the channel. In frequency domain it is given by

$$
g_{\omega}\left(r, r_{0}\right)=\frac{e^{i k R}}{4 \pi R} \quad \text { where } \quad R=\left|r-r_{0}\right|
$$

- Green function satisfies the inhomogeneous Helmholtz equation,

$$
\left[\nabla^{2}+k^{2}\right] g_{\omega}\left(r, r_{0}\right)=-\delta\left(r-r_{0}\right)
$$

- The green function for the time domain wave equation is obtained by taking the Fourier transform

$$
g_{t}\left(r, r_{0}\right)=\frac{\delta(R / c-t)}{4 \pi R}
$$

Source in a bounded medium

- In case of more realistic environment like a bounded media, the green function satisfies the Helmholtz equation by

$$
\begin{aligned}
{\left[\nabla^{2}+k^{2}\right] G_{\omega}\left(r, r_{0}\right) } & =\delta\left(r-r_{0}\right) \\
G_{\omega}\left(r, r_{0}\right)=g_{\omega}\left(r, r_{0}\right) & +H_{\omega}(r)
\end{aligned}
$$

- Using the green function for the bounded medium and doing some mathematical manipulations

Source in a bounded medium

- In case of more realistic environment like a bounded media, the green function satisfies the Helmholtz equation by

$$
\begin{aligned}
& {\left[\nabla^{2}+k^{2}\right] G_{\omega}\left(r, r_{0}\right)=\delta\left(r-r_{0}\right)} \\
& G_{\omega}\left(r, r_{0}\right)=g_{\omega}\left(r, r_{0}\right)+H_{\omega}(r)
\end{aligned}
$$

- Using the green function for the bounded medium and doing some mathematical manipulations

Source in a bounded medium

- In case of more realistic environment like a bounded media, the green function satisfies the Helmholtz equation by

$$
\begin{aligned}
{\left[\nabla^{2}+k^{2}\right] G_{\omega}\left(r, r_{0}\right) } & =\delta\left(r-r_{0}\right) \\
G_{\omega}\left(r, r_{0}\right)=g_{\omega}\left(r, r_{0}\right) & +H_{\omega}(r)
\end{aligned}
$$

- Using the green function for the bounded medium and doing some mathematical manipulations

Source in a bounded medium

$$
\begin{aligned}
& \psi(r)=\int_{S}\left[G_{\omega}\left(r, r_{0}\right) \frac{\partial \psi\left(r_{0}\right)}{\partial n_{0}}-\psi\left(r_{0}\right) \frac{\partial G_{\omega}\left(r, r_{0}\right)}{\partial n_{0}}\right] d S_{0} \\
& \quad-\int_{V} f\left(r_{0}\right) G_{\omega}\left(r, r_{0}\right) d V_{0}
\end{aligned}
$$

where n_{0} is the outward pointing normal on the surface.

- Difficult to attain the closed form solution.
- Make assumptions on the green function to simplify the expression.

Source in a bounded medium

$$
\begin{aligned}
& \psi(r)=\int_{S}\left[G_{\omega}\left(r, r_{0}\right) \frac{\partial \psi\left(r_{0}\right)}{\partial n_{0}}-\psi\left(r_{0}\right) \frac{\partial G_{\omega}\left(r, r_{0}\right)}{\partial n_{0}}\right] d S_{0} \\
& \quad-\int_{V} f\left(r_{0}\right) G_{\omega}\left(r, r_{0}\right) d V_{0}
\end{aligned}
$$

where n_{0} is the outward pointing normal on the surface.

- Difficult to attain the closed form solution.
- Make assumptions on the green function to simplify the expression.

Source in a bounded medium

$$
\begin{aligned}
& \psi(r)=\int_{S}\left[G_{\omega}\left(r, r_{0}\right) \frac{\partial \psi\left(r_{0}\right)}{\partial n_{0}}-\psi\left(r_{0}\right) \frac{\partial G_{\omega}\left(r, r_{0}\right)}{\partial n_{0}}\right] d S_{0} \\
& \quad-\int_{V} f\left(r_{0}\right) G_{\omega}\left(r, r_{0}\right) d V_{0}
\end{aligned}
$$

where n_{0} is the outward pointing normal on the surface.

- Difficult to attain the closed form solution.
- Make assumptions on the green function to simplify the expression.

Point source in fluid halfspace

- Assuming a point source is placed at $r_{s}=\left(x_{s}, y_{s}, z_{s}\right)$ and origin at the surface, we can replace the pressure release boundary condition by

$$
\psi\left(r_{0}\right)=0, \quad r_{0}=(x, y, 0)
$$

- Using the green function for the bounded media we have

$$
\psi(r)=\int_{S} G_{\omega}\left(r_{,}, r_{0}\right) \frac{\partial \psi\left(r_{0}\right)}{\partial n_{0}}-\int_{V} f\left(r_{0}\right) G_{\omega}\left(r, r_{0}\right) d V_{0}
$$

Point source in fluid halfspace

- Assuming a point source is placed at $r_{s}=\left(x_{s}, y_{s}, z_{s}\right)$ and origin at the surface, we can replace the pressure release boundary condition by

$$
\psi\left(r_{0}\right)=0, \quad r_{0}=(x, y, 0)
$$

- Using the green function for the bounded media we have

Point source in fluid halfspace

- Assuming a point source is placed at $r_{s}=\left(x_{s}, y_{s}, z_{s}\right)$ and origin at the surface, we can replace the pressure release boundary condition by

$$
\psi\left(r_{0}\right)=0, \quad r_{0}=(x, y, 0)
$$

- Using the green function for the bounded media we have

$$
\psi(r)=\int_{S} G_{\omega}\left(r, r_{0}\right) \frac{\partial \psi\left(r_{0}\right)}{\partial n_{0}}-\int_{V} f\left(r_{0}\right) G_{\omega}\left(r, r_{0}\right) d V_{0}
$$

Point source in fluid halfspace

- where n_{0} is the outward pointing normal on the surface.
- For a noint source, the source field is given by

$$
f\left(r_{0}\right)=S_{\omega} \delta\left(r_{0}-r_{s}\right)
$$

- In order to simplify, we can choose the green function such that $G_{\omega}\left(r, r_{0}\right)=0$ then the displacement potential becomes

$$
\psi(r)=-S_{\omega} G_{\omega}\left(r, r_{s}\right)
$$

Point source in fluid halfspace

- where n_{0} is the outward pointing normal on the surface.
- For a point source, the source field is given by

$$
f\left(r_{0}\right)=S_{\omega} \delta\left(r_{0}-r_{s}\right)
$$

- In order to simplify, we can choose the green function such that $G_{\omega}\left(r, r_{0}\right)=0$ then the displacement potential becomes

$$
\psi(r)=-S_{\omega} G_{\omega}\left(r, r_{s}\right)
$$

Point source in fluid halfspace

- where n_{0} is the outward pointing normal on the surface.
- For a point source, the source field is given by

$$
f\left(r_{0}\right)=S_{\omega} \delta\left(r_{0}-r_{s}\right)
$$

- In order to simplify, we can choose the green function such that $G_{\omega}\left(r, r_{0}\right)=0$ then the displacement potential becomes

$$
\psi(r)=-S_{\omega} G_{\omega}\left(r, r_{s}\right)
$$

Point source in fluid halfspace

- where n_{0} is the outward pointing normal on the surface.
- For a point source, the source field is given by

$$
f\left(r_{0}\right)=S_{\omega} \delta\left(r_{0}-r_{s}\right)
$$

- In order to simplify, we can choose the green function such that $G_{\omega}\left(r, r_{0}\right)=0$ then the displacement potential becomes

$$
\psi(r)=-S_{\omega} G_{\omega}\left(r, r_{s}\right)
$$

Integral Transform Technique

- Applicable when both the coefficients of the Helmholtz equation and boundary conditions are independent of one or more space coordinates.
- Choice of the coordinate system is important.
- Boundary conditions control the choice of the coordinate system.

Integral Transform Technique

- Applicable when both the coefficients of the Helmholtz equation and boundary conditions are independent of one or more space coordinates.
- Choice of the coordinate system is important.
- Boundary conditions control the choice of the coordinate system.

Integral Transform Technique

- Applicable when both the coefficients of the Helmholtz equation and boundary conditions are independent of one or more space coordinates.
- Choice of the coordinate system is important.
- Boundary conditions control the choice of the coordinate system.

Integral Transform Technique

- Applicable when both the coefficients of the Helmholtz equation and boundary conditions are independent of one or more space coordinates.
- Choice of the coordinate system is important.
- Boundary conditions control the choice of the coordinate system.

Plane propagation problem

- Choosing the Cartesian coordinates and assuming an infinite line source along y-axis, the Helmholtz equation is reduced to two dimension, the range and the depth.

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] \psi(x, z)=S_{\omega} \delta(x) \delta\left(z-z_{s}\right)
$$

- The boundary condition is given by

$$
B[\psi(r)]_{z=z_{n}}=0, \quad n=1, \ldots, N
$$

- Taking the Fourier transform to obtain the depth separated equation and inserting the value of the displacement potential,

$$
\left[\frac{d^{2}}{d z^{2}}+\left(k^{2}-k_{x}^{2}\right)\right] G_{\omega}\left(k_{x}, z^{\prime}, z_{s}\right)=-\frac{\delta\left(z-z_{s}\right)}{2 \pi}
$$

- $G_{\omega}\left(k_{x}, z, z_{s}\right)$ is the depth dependent Green function, which is the superposition of the free field and homogeneous field.
- The total field must satisfy the boundary conditions.

Plane propagation problem

- Choosing the Cartesian coordinates and assuming an infinite line source along y-axis, the Helmholtz equation is reduced to two dimension, the range and the depth.

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] \psi(x, z)=S_{\omega} \delta(x) \delta\left(z-z_{s}\right)
$$

- The boundary condition is given by
- Taking the Fourier transform to obtain the depth separated equation and inserting the value of the displacement potential,

- $G_{\omega}\left(k_{x}, z, z_{s}\right)$ is the depth dependent Green function, which is the superposition of the free field and homogeneous field.
- The total field must satisfy the boundary conditions.

Plane propagation problem

- Choosing the Cartesian coordinates and assuming an infinite line source along y-axis, the Helmholtz equation is reduced to two dimension, the range and the depth.

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] \psi(x, z)=S_{\omega} \delta(x) \delta\left(z-z_{s}\right)
$$

- The boundary condition is given by

$$
B[\psi(r)]_{z=z_{n}}=0, \quad n=1, \ldots, N
$$

- Taking the Fourier transform to obtain the depth separated equation and inserting the value of the displacement potential,

- $G_{\omega}\left(k_{x}, z, z_{s}\right)$ is the depth dependent Green function, which is the superposition of the free field and homogeneous field.
- The total field must satisfy the boundary conditions.

Plane propagation problem

- Choosing the Cartesian coordinates and assuming an infinite line source along y-axis, the Helmholtz equation is reduced to two dimension, the range and the depth.

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] \psi(x, z)=S_{\omega} \delta(x) \delta\left(z-z_{s}\right)
$$

- The boundary condition is given by

$$
B[\psi(r)]_{z=z_{n}}=0, \quad n=1, \ldots, N
$$

- Taking the Fourier transform to obtain the depth separated equation and inserting the value of the displacement potential,

$$
\left[\frac{d^{2}}{d z^{2}}+\left(k^{2}-k_{x}^{2}\right)\right] G_{\omega}\left(k_{x}, z, z_{s}\right)=-\frac{\delta\left(z-z_{s}\right)}{2 \pi}
$$

- $G_{\omega}\left(k_{x}, z, z_{s}\right)$ is the depth dependent Green function, which is the superposition of the free field and homogeneous field.
- The total field must satisfy the boundary conditions.

Plane propagation problem

- Choosing the Cartesian coordinates and assuming an infinite line source along y-axis, the Helmholtz equation is reduced to two dimension, the range and the depth.

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] \psi(x, z)=S_{\omega} \delta(x) \delta\left(z-z_{s}\right)
$$

- The boundary condition is given by

$$
B[\psi(r)]_{z=z_{n}}=0, \quad n=1, \ldots, N
$$

- Taking the Fourier transform to obtain the depth separated equation and inserting the value of the displacement potential,

$$
\left[\frac{d^{2}}{d z^{2}}+\left(k^{2}-k_{x}^{2}\right)\right] G_{\omega}\left(k_{x}, z, z_{s}\right)=-\frac{\delta\left(z-z_{s}\right)}{2 \pi}
$$

- $G_{\omega}\left(k_{x}, z, z_{s}\right)$ is the depth dependent Green function, which is the superposition of the free field and homogeneous field.

Plane propagation problem

- Choosing the Cartesian coordinates and assuming an infinite line source along y-axis, the Helmholtz equation is reduced to two dimension, the range and the depth.

$$
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] \psi(x, z)=S_{\omega} \delta(x) \delta\left(z-z_{s}\right)
$$

- The boundary condition is given by

$$
B[\psi(r)]_{z=z_{n}}=0, \quad n=1, \ldots, N
$$

- Taking the Fourier transform to obtain the depth separated equation and inserting the value of the displacement potential,

$$
\left[\frac{d^{2}}{d z^{2}}+\left(k^{2}-k_{x}^{2}\right)\right] G_{\omega}\left(k_{x}, z, z_{s}\right)=-\frac{\delta\left(z-z_{s}\right)}{2 \pi}
$$

- $G_{\omega}\left(k_{x}, z, z_{s}\right)$ is the depth dependent Green function, which is the superposition of the free field and homogeneous field.
- The total field must satisfy the boundary conditions.

Reflection and Transmission

- Assuming the simplest of the bottom model as shown in the figure. The point source is located in the water column at depth $z=z_{s}$.
- For homogeneous medium, the solution of the equation is given as

$$
H_{\omega}\left(k_{r}, z\right)=A^{+}\left(k_{r}\right) e^{i k_{z} z}+A^{-}\left(k_{r}\right) e^{-i k_{z} z}
$$

- Where k_{z} is the vertical wavenumber, given by

$$
k_{z}=\sqrt{k^{2}-k_{T}^{2}}
$$

Reflection and Transmission

- Assuming the simplest of the bottom model as shown in the figure. The point source is located in the water column at depth $z=z_{s}$.
- For homogeneous medium, the solution of the equation is given as

- Where k_{z} is the vertical wavenumber, given by

Reflection and Transmission

- Assuming the simplest of the bottom model as shown in the figure. The point source is located in the water column at depth $z=z_{s}$.
- For homogeneous medium, the solution of the equation is given as

$$
H_{\omega}\left(k_{r}, z\right)=A^{+}\left(k_{r}\right) e^{i k_{k} z}+A^{-}\left(k_{r}\right) e^{-i k_{z} z}
$$

- Where k_{z} is the vertical wavenumber, given by

Reflection and Transmission

- Assuming the simplest of the bottom model as shown in the figure. The point source is located in the water column at depth $z=z_{s}$.
- For homogeneous medium, the solution of the equation is given as

$$
H_{\omega}\left(k_{r}, z\right)=A^{+}\left(k_{r}\right) e^{i k_{k} z}+A^{-}\left(k_{r}\right) e^{-i k_{z} z}
$$

- Where k_{z} is the vertical wavenumber, given by

$$
k_{z}=\sqrt{k^{2}-k_{r}^{2}}
$$

Reflection and Transmission

- Using the radiation condition, the homogeneous solution in the upper halfspace is given by

$$
H_{\omega, 1}\left(k_{r}, z\right)=A_{1}^{-}\left(k_{r}\right) e^{-i k_{z, 1} z}
$$

- Similarly the solution in the lower halfspace will be

$$
H_{\omega, 2}\left(k_{r}, z\right)=A_{2}^{+}\left(k_{r}\right) e^{i k_{z, 2} z}
$$

- Both unknown amplitudes can be found using the boundary conditions of continuity of vertical displacement and continuity of pressure. The expression for the amplitudes is given by

$$
\begin{aligned}
& A_{1}^{-}=\frac{\rho_{2} k_{z, 1}-\rho_{1} k_{z, 2}}{\rho_{2} k_{z, 1}+\rho_{1} k_{z, 2}} g_{\omega, 1}\left(k_{r}, 0, z_{s}\right) \\
& A_{2}^{+}=\frac{2 \rho_{1} k_{z, 1}}{\rho_{2} k_{z, 1}+\rho_{1} k_{z, 2}} g_{\omega, 1}\left(k_{r}, 0, z_{s}\right)
\end{aligned}
$$

Reflection and Transmission

- Using the radiation condition, the homogeneous solution in the upper halfspace is given by

$$
H_{\omega, 1}\left(k_{r}, z\right)=A_{1}^{-}\left(k_{r}\right) e^{-i k_{z, 1} z}
$$

- Similarly the solution in the lower halfspace will be

$$
H_{\omega, 2}\left(k_{r}, z\right)=A_{2}^{+}\left(k_{r}\right) e^{i k_{z, 2} z}
$$

- Both unknown amplitudes can be found using the boundary conditions of continuity of vertical displacement and continuity of pressure. The expression for the amplitudes is given by

Reflection and Transmission

- Using the radiation condition, the homogeneous solution in the upper halfspace is given by

$$
H_{\omega, 1}\left(k_{r}, z\right)=A_{1}^{-}\left(k_{r}\right) e^{-i k_{z, 1} z}
$$

- Similarly the solution in the lower halfspace will be

$$
H_{\omega, 2}\left(k_{r}, z\right)=A_{2}^{+}\left(k_{r}\right) e^{i k_{z, 2} z}
$$

- Both unknown amplitudes can be found using the boundary conditions of continuity of vertical displacement and continuity of pressure. The expression for the amplitudes is given by

Reflection and Transmission

- Using the radiation condition, the homogeneous solution in the upper halfspace is given by

$$
H_{\omega, 1}\left(k_{r}, z\right)=A_{1}^{-}\left(k_{r}\right) e^{-i k_{z, 1} z}
$$

- Similarly the solution in the lower halfspace will be

$$
H_{\omega, 2}\left(k_{r}, z\right)=A_{2}^{+}\left(k_{r}\right) e^{i k_{z, 2} z}
$$

- Both unknown amplitudes can be found using the boundary conditions of continuity of vertical displacement and continuity of pressure. The expression for the amplitudes is given by

$$
\begin{aligned}
A_{1}^{-} & =\frac{\rho_{2} k_{z, 1}-\rho_{1} k_{z, 2}}{\rho_{2} k_{z, 1}+\rho_{1} k_{z, 2}} g_{\omega, 1}\left(k_{r}, 0, z_{s}\right) \\
A_{2}^{+} & =\frac{2 \rho_{1} k_{z, 1}}{\rho_{2} k_{z, 1}+\rho_{1} k_{z, 2}} g_{\omega, 1}\left(k_{r}, 0, z_{s}\right)
\end{aligned}
$$

Reflection and Transmission

- Using the radiation condition, the homogeneous solution in the upper halfspace is given by

$$
H_{\omega, 1}\left(k_{r}, z\right)=A_{1}^{-}\left(k_{r}\right) e^{-i k_{z, 1} z}
$$

- Similarly the solution in the lower halfspace will be

$$
H_{\omega, 2}\left(k_{r}, z\right)=A_{2}^{+}\left(k_{r}\right) e^{i k_{z, 2} z}
$$

- Both unknown amplitudes can be found using the boundary conditions of continuity of vertical displacement and continuity of pressure. The expression for the amplitudes is given by

$$
\begin{aligned}
A_{1}^{-} & =\frac{\rho_{2} k_{z, 1}-\rho_{1} k_{z, 2}}{\rho_{2} k_{z, 1}+\rho_{1} k_{z, 2}} g_{\omega, 1}\left(k_{r}, 0, z_{s}\right) \\
A_{2}^{+} & =\frac{2 \rho_{1} k_{z, 1}}{\rho_{2} k_{z, 1}+\rho_{1} k_{z, 2}} g_{\omega, 1}\left(k_{r}, 0, z_{s}\right)
\end{aligned}
$$

Hard Bottom Vs Soft Bottom

Figure : Spectral Domain for the hard bottom (top), soft bottom (bottom)

Hard Bottom Vs Soft Bottom

Figure : Reflection coefficient as a function of grazing angle for hard bottom (top), soft bottom (bottom). Solid curve: Magnitude. Dashed curve: Phase

Ideal fluid waveguide

- Assuming the simplest ocean waveguide with range independent, isovelocity water column and perfectly rigid boundaries as shown in the figure.
- Solution of the waveguide problem can be obtained by superposition principle.

Ideal fluid waveguide

- Assuming the simplest ocean waveguide with range independent, isovelocity water column and perfectly rigid boundaries as shown in the figure.
- Solution of the waveguide problem can be obtained by superposition principle.

Ideal fluid waveguide

- Assuming the simplest ocean waveguide with range independent, isovelocity water column and perfectly rigid boundaries as shown in the figure.
- Solution of the waveguide problem can be obtained by superposition principle.

Ideal fluid waveguide

- The field produced at point $\left(0, z_{s}\right)$ in the absence of boundaries is given by

$$
\psi(r, z)=-S_{\omega} \frac{e^{i k R}}{4 \pi R}
$$

- For solving the homogeneous equation which satisfies the boundary conditions, we can use two methods
- Image Method.
- Integral Transform solution.

Ideal fluid waveguide

- The field produced at point $\left(0, z_{s}\right)$ in the absence of boundaries is given by

$$
\psi(r, z)=-S_{\omega} \frac{e^{i k R}}{4 \pi R}
$$

- For solving the homogeneous equation which satisfies the boundary conditions, we can use two methods
- Image Method.
- Integral Transform solution.

Ideal fluid waveguide

- The field produced at point $\left(0, z_{s}\right)$ in the absence of boundaries is given by

$$
\psi(r, z)=-S_{\omega} \frac{e^{i k R}}{4 \pi R}
$$

- For solving the homogeneous equation which satisfies the boundary conditions, we can use two methods
- Image Method.
- Integral Transform solution.

Ideal fluid waveguide

- In the waveguide problem, sound will be multiply reflected between the two boundaries and require an infinite number of image sources.
- Figure above shows the contribution from the physical source at depth z_{s} and the first three image sources, leading to the first four terms in the expression in the total field

$$
\psi(r, z) \simeq \frac{-S_{\omega}}{4 \pi}
$$

$\left.+\frac{e^{i k R_{04}}}{R_{\text {a }}}\right]$

Ideal fluid waveguide

- In the waveguide problem, sound will be multiply reflected between the two boundaries and require an infinite number of image sources.
- Figure above shows the contribution from the physical source at depth z_{s} and the first three image sources, leading to the first four terms in the expression in the total field

Ideal fluid waveguide

- In the waveguide problem, sound will be multiply reflected between the two boundaries and require an infinite number of image sources.
- Figure above shows the contribution from the physical source at depth z_{s} and the first three image sources, leading to the first four terms in the expression in the total field

$$
\psi(r, z) \simeq \frac{-S_{\omega}}{4 \pi}\left[\frac{e^{i k R_{01}}}{R_{01}}-\frac{e^{i k R_{02}}}{R_{02}}-\frac{e^{i k R_{03}}}{R_{03}}+\frac{e^{i k R_{04}}}{R_{04}}\right]
$$

Ideal fluid waveguide

- where the negative sign corresponds to an odd number of reflections and the positive signs correspond to an even number of reflections.
- Expanding it to the total field, we have

$$
\psi(r, z)=\frac{-S_{\omega}}{4 \pi} \sum_{m=0}^{\infty}\left[\frac{e^{i k R_{m 1}}}{R_{m 1}}-\frac{e^{i k R_{m 2}}}{R_{m 2}}-\frac{e^{i k R_{m 3}}}{R_{m 3}}+\frac{e^{i k R_{m 4}}}{R_{m 4}}\right]
$$

Ideal fluid waveguide

- where the negative sign corresponds to an odd number of reflections and the positive signs correspond to an even number of reflections.
- Expanding it to the total field, we have

Ideal fluid waveguide

- where the negative sign corresponds to an odd number of reflections and the positive signs correspond to an even number of reflections.
- Expanding it to the total field, we have

$$
\psi(r, z)=\frac{-S_{\omega}}{4 \pi} \sum_{m=0}^{\infty}\left[\frac{e^{i k R_{m 1}}}{R_{m 1}}-\frac{e^{i k R_{m 2}}}{R_{m 2}}-\frac{e^{i k R_{m 3}}}{R_{m 3}}+\frac{e^{i k R_{m 4}}}{R_{m 4}}\right]
$$

Ideal fluid waveguide

- Computing the time domain green function, we have

$$
\begin{aligned}
g_{t}(r, z) & =\frac{1}{4 \pi} \sum_{m=0}^{\infty}\left(\frac{\delta\left(R_{m 1} / c-t\right)}{R_{m 1}}-\frac{\delta\left(R_{m 2} / c-t\right)}{R_{m 2}}\right. \\
- & \left.\frac{\delta\left(R_{m 3} / c-t\right)}{R_{m 3}}+\frac{\delta\left(R_{m 4} / c-t\right)}{R_{m 4}}\right)
\end{aligned}
$$

- In order to obtain the received signal, the source function is convolved with the time domain green function.
- At low frequencies, the multiples will interfere and the received signal will be distorted.
- Only short and high frequency pulses can be individually identified as true images of the source signal.

Ideal fluid waveguide

- Computing the time domain green function, we have

$$
\begin{aligned}
& g_{t}(r, z)=\frac{1}{4 \pi} \sum_{m=0}^{\infty}\left(\frac{\delta\left(R_{m 1} / c-t\right)}{R_{m 1}}-\frac{\delta\left(R_{m 2} / c-t\right)}{R_{m 2}}\right. \\
& \left.\quad-\frac{\delta\left(R_{m 3} / c-t\right)}{R_{m 3}}+\frac{\delta\left(R_{m 4} / c-t\right)}{R_{m 4}}\right)
\end{aligned}
$$

- In order to obtain the received signal, the source function is convolved with the time domain green function.
- At low frequencies, the multiples will interfere and the received signal will be distorted.
- Only short and high frequency pulses can be individually identified as true images of the source signal.

Ideal fluid waveguide

- Computing the time domain green function, we have

$$
\begin{aligned}
g_{t}(r, z) & =\frac{1}{4 \pi} \sum_{m=0}^{\infty}\left(\frac{\delta\left(R_{m 1} / c-t\right)}{R_{m 1}}-\frac{\delta\left(R_{m 2} / c-t\right)}{R_{m 2}}\right. \\
& \left.-\frac{\delta\left(R_{m 3} / c-t\right)}{R_{m 3}}+\frac{\delta\left(R_{m 4} / c-t\right)}{R_{m 4}}\right)
\end{aligned}
$$

- In order to obtain the received signal, the source function is convolved with the time domain green function.
- At low frequencies, the multiples will interfere and the received signal will be distorted.
- Only short and high frequency pulses can be individually identified as true images of the source signal.

Ideal fluid waveguide

- Computing the time domain green function, we have

$$
\begin{aligned}
& g_{t}(r, z)=\frac{1}{4 \pi} \sum_{m=0}^{\infty}\left(\frac{\delta\left(R_{m 1} / c-t\right)}{R_{m 1}}-\frac{\delta\left(R_{m 2} / c-t\right)}{R_{m 2}}\right. \\
& \left.\quad-\frac{\delta\left(R_{m 3} / c-t\right)}{R_{m 3}}+\frac{\delta\left(R_{m 4} / c-t\right)}{R_{m 4}}\right)
\end{aligned}
$$

- In order to obtain the received signal, the source function is convolved with the time domain green function.
- At low frequencies, the multiples will interfere and the received signal will be distorted.
- Only short and high frequency pulses can be individually identified as true images of the source signal.

Ideal fluid waveguide

- Computing the time domain green function, we have

$$
\begin{aligned}
& g_{t}(r, z)=\frac{1}{4 \pi} \sum_{m=0}^{\infty}\left(\frac{\delta\left(R_{m 1} / c-t\right)}{R_{m 1}}-\frac{\delta\left(R_{m 2} / c-t\right)}{R_{m 2}}\right. \\
& \left.-\frac{\delta\left(R_{m 3} / c-t\right)}{R_{m 3}}+\frac{\delta\left(R_{m 4} / c-t\right)}{R_{m 4}}\right)
\end{aligned}
$$

- In order to obtain the received signal, the source function is convolved with the time domain green function.
- At low frequencies, the multiples will interfere and the received signal will be distorted.
- Only short and high frequency pulses can be individually identified as true images of the source signal.

Integral Transform solution

- Using the integral transform technique, the total field is represented as

$$
\psi(r, z)=\int_{0}^{\infty} \psi\left(k_{r}, z\right) J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- Using the superposition principle and applying the boundary conditions, the free-field waveguide solution becomes

$$
\psi\left(k_{r}, z\right)=-\frac{S_{\omega}}{4 \pi}\left\{\begin{array}{l}
\frac{\sin k_{z} z \sin k_{z}\left(D-z_{s}\right)}{k_{z} \sin k_{z} D}, z<z_{s} \\
\frac{\sin k_{z} z_{s} \sin k_{z}(D-z)}{k_{z} \sin k_{z} D}, z>z_{s}
\end{array}\right.
$$

- Using the relation between Hankel and Bassel function and doing some algebraic manipulations we have

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{S}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

Integral Transform solution

- Using the integral transform technique, the total field is represented as

$$
\psi(r, z)=\int_{0}^{\infty} \psi\left(k_{r}, z\right) J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- Using the superposition principle and applying the boundary conditions, the free-field waveguide solution becomes

- Using the relation between Hankel and Bassel function and doing some algebraic manipulations we have

Integral Transform solution

- Using the integral transform technique, the total field is represented as

$$
\psi(r, z)=\int_{0}^{\infty} \psi\left(k_{r}, z\right) J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- Using the superposition principle and applying the boundary conditions, the free-field waveguide solution becomes

$$
\psi\left(k_{r}, z\right)=-\frac{S_{\omega}}{4 \pi}\left\{\begin{array}{l}
\frac{\sin k_{z} z \sin k_{z}\left(D-z_{s}\right)}{k_{z} \sin k_{k} D}, z<z_{s} \\
\frac{\sin k_{z} z \sin z_{k}(D-z)}{k_{z} \sin k_{z} D}, z>z_{s}
\end{array}\right.
$$

- Using the relation between Hankel and Bassel function and doing some algebraic manipulations we have

Integral Transform solution

- Using the integral transform technique, the total field is represented as

$$
\psi(r, z)=\int_{0}^{\infty} \psi\left(k_{r}, z\right) J_{0}\left(k_{r} r\right) k_{r} d k_{r}
$$

- Using the superposition principle and applying the boundary conditions, the free-field waveguide solution becomes

$$
\psi\left(k_{r}, z\right)=-\frac{S_{\omega}}{4 \pi}\left\{\begin{array}{l}
\frac{\sin k_{z} z \sin k_{2}\left(D-z_{s}\right)}{k_{z} \sin k_{k} D}, z<z_{s} \\
\frac{\sin k_{z} z s \sin k_{k}(D-z)}{k_{z} \sin k_{z} D}, z>z_{s}
\end{array}\right.
$$

- Using the relation between Hankel and Bassel function and doing some algebraic manipulations we have

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{s}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

Normal Mode solution

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{s}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

- This is the normal mode expansion of the field.
- The field remains the same even if the source and the receiver are interchanged
- Modal excitation is proportional to the amplitude of that particular mode at the source depth.
- Propagating Vs Evanescent modes.

Normal Mode solution

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{s}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

- This is the normal mode expansion of the field.
- The field remains the same even if the source and the receiver are interchanged
- Modal excitation is proportional to the amplitude of that particular mode at the source depth.
- Propagating Vs Evanescent modes.

Normal Mode solution

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{s}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

- This is the normal mode expansion of the field.
- The field remains the same even if the source and the receiver are interchanged
- Modal excitation is proportional to the amplitude of that particular mode at the source depth.
- Pronagating Vs Evanescent modes.

Normal Mode solution

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{s}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

- This is the normal mode expansion of the field.
- The field remains the same even if the source and the receiver are interchanged
- Modal excitation is proportional to the amplitude of that particular mode at the source depth.
- Propagating Vs Evanescent modes.

Normal Mode solution

$$
\psi(r, z)=\frac{i S_{\omega}}{2 D} \sum_{m=1}^{\infty} \sin \left(k_{z m} z\right) \sin \left(k_{z m} z_{s}\right) H_{0}^{(1)}\left(k_{r m} r\right)
$$

- This is the normal mode expansion of the field.
- The field remains the same even if the source and the receiver are interchanged
- Modal excitation is proportional to the amplitude of that particular mode at the source depth.
- Propagating Vs Evanescent modes.

Relation between Rays and Modes

- A normal mode is the superposition of up and down going plane waves.

$$
\sin \left(k_{z m} z\right)=\frac{e^{i k_{z m} z}-e^{-i k_{z m} z}}{2 i}
$$

- Both of the waves are propagating at the grazing angles $\theta_{m}=\arctan \left(k_{z m} / k_{r m}\right)$. The propagation path is shown in the figure.
- The dashed line shows the common wavefront for the wave passing through points A and B. The distance between A and B is given by $L_{A B}=m \lambda$ where λ is the acoustic wavelength.
- The discrete wavenumbers are the points where multiple reflections of the plane wave are in phase, giving rise to resonance.

Relation between Rays and Modes

- A normal mode is the superposition of up and down going plane waves.

$$
\sin \left(k_{z m} z\right)=\frac{e^{i k_{z m} z}-e^{-i k_{m m} z}}{2 i}
$$

- Both of the waves are propagating at the grazing angles $\theta_{m}=\arctan \left(k_{z m} / k_{r m}\right)$. The propagation path is shown in the figure.
- The dashed line shows the common wavefront for the wave passing through points A and B. The distance between A and B is given by $L_{A B}=m \lambda$ where λ is the acoustic wavelength.
- The discrete wavenumbers are the points where multiple reflections of the plane wave are in phase, giving rise to resonance.

Relation between Rays and Modes

- A normal mode is the superposition of up and down going plane waves.

$$
\sin \left(k_{z m} z\right)=\frac{e^{i k_{z m} z}-e^{-i k_{z m} z}}{2 i}
$$

- Both of the waves are propagating at the grazing angles $\theta_{m}=\arctan \left(k_{z m} / k_{r m}\right)$. The propagation path is shown in the figure.
- The dashed line shows the common wavefront for the wave passing through points A and B . The distance between A and B is given by $L_{A B}=m \lambda$ where λ is the acoustic wavelength.
- The discrete wavenumbers are the points where multiple reflections of the plane wave are in phase, giving rise to resonance.

Relation between Rays and Modes

- A normal mode is the superposition of up and down going plane waves.

$$
\sin \left(k_{z m} z\right)=\frac{e^{i k_{z m} z}-e^{-i k_{m m} z}}{2 i}
$$

- Both of the waves are propagating at the grazing angles $\theta_{m}=\arctan \left(k_{z m} / k_{r m}\right)$. The propagation path is shown in the figure.
- The dashed line shows the common wavefront for the wave passing through points A and B. The distance between A and B is given by $L_{A B}=m \lambda$ where λ is the acoustic wavelength.

Relation between Rays and Modes

- A normal mode is the superposition of up and down going plane waves.

$$
\sin \left(k_{z m} z\right)=\frac{e^{i k_{z m} z}-e^{-i k_{z m} z}}{2 i}
$$

- Both of the waves are propagating at the grazing angles $\theta_{m}=\arctan \left(k_{z m} / k_{r m}\right)$. The propagation path is shown in the figure.
- The dashed line shows the common wavefront for the wave passing through points A and B. The distance between A and B is given by $L_{A B}=m \lambda$ where λ is the acoustic wavelength.
- The discrete wavenumbers are the points where multiple reflections of the plane wave are in phase, giving rise to resonance.

Deep Ocean waveguide

- Depth variations and temporal variations of the sound speed profile.
- The scale of temnoral variations is much larger than the vertical variations.
- Range independent environment can provide a realistic model of the deep ocean specially for the arctic environment.
- In the exact solution, the water column is divided in multiple layers and the wave equation is solved for each layer.
- W/KB solution approvimates the solution of the wave equation by amplitude and phase where both are functions of depth.

Deep Ocean waveguide

- Depth variations and temporal variations of the sound speed profile.
- The scale of temporal variations is much larger than the vertical variations.
- Range indenendent environment can provide a realistic model of the deep ocean specially for the arctic environment.
- In the exact solution, the water column is divided in multiple layers and the wave equation is solved for each layer.
- WKB solution approximates the solution of the wave equation by amplitude and phase where both are functions of depth.

Deep Ocean waveguide

- Depth variations and temporal variations of the sound speed profile.
- The scale of temporal variations is much larger than the vertical variations.
- Range independent environment can provide a realistic model of the deep ocean specially for the arctic environment.
- In the exact solution, the water column is divided in multiple layers and the wave equation is solved for each layer.
- WKB solution approximates the solution of the wave equation by amplitude and phase where both are functions of depth.

Deep Ocean waveguide

- Depth variations and temporal variations of the sound speed profile.
- The scale of temporal variations is much larger than the vertical variations.
- Range independent environment can provide a realistic model of the deep ocean specially for the arctic environment.
- In the exact solution, the water column is divided in multiple layers and the wave equation is solved for each layer.
- W/KB solution approvimates the solution of the wave equation by amplitude and phase where both are functions of depth.

Deep Ocean waveguide

- Depth variations and temporal variations of the sound speed profile.
- The scale of temporal variations is much larger than the vertical variations.
- Range independent environment can provide a realistic model of the deep ocean specially for the arctic environment.
- In the exact solution, the water column is divided in multiple layers and the wave equation is solved for each layer.
- WKB solution approximates the solution of the wave equation by amplitude and phase where both are functions of depth.

Deep Ocean waveguide

- Depth variations and temporal variations of the sound speed profile.
- The scale of temporal variations is much larger than the vertical variations.
- Range independent environment can provide a realistic model of the deep ocean specially for the arctic environment.
- In the exact solution, the water column is divided in multiple layers and the wave equation is solved for each layer.
- WKB solution approximates the solution of the wave equation by amplitude and phase where both are functions of depth.

