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Wave Equation

Propagation of the acoustic wave in the fluid is governed by the wave
equation.

Wave equation can be formulated by three equations:
Equation of continuity
Euler’s equation
Equation of state
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Wave equation

Continuity Equation: Net change in the mass due to its flow through an
element is equal to the changes in the density of the mass of element.

∂ρ

∂t
= −∇ · (ρv)

Euler’s Equation: Force equals mass time acceleration.

ρ

[
∂v
∂t

+ v · ∇v
]
= −∇p

State Equation: Relationship between the change in density and a
change in pressure.

p = p(ρ, S) where S is the entropy
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Linear Wave equation

Assuming that each physical quantity is a function of a steady-state,
time-independent value and a small fluctuation term

p = p0 + p′

ρ = ρ0 + ρ′

v = v0 + v′

The linearized equations are

∂ρ′

∂t
= −∇ · (ρ0v)

∂v
∂t

= − 1
ρ0
∇p′(ρ)

∂p′

∂t
= c2

(
∂ρ′

∂t
+ v · ∇ρ0

)
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Different forms of Wave equation

Wave equation for pressure

ρ∇ ·
(

1
ρ
∇p
)
− 1

c2
∂2p
∂t2 = 0

Wave equation for particle velocity

1
ρ
∇(ρc2∇ · v)− ∂2v

∂t2 = 0

Wave equation for velocity potential (v = ∇φ)

∇2φ− 1
c2
∂2φ

∂t2 = 0
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Different forms of Wave equation

Wave equation for Displacement potential (u = ∇ψ)

∇2ψ − 1
c2
∂2ψ

∂t2 = 0

Wave equation in the presence of a source

∇2ψ − 1
c2
∂2ψ

∂t2 = f (r, t)

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 7 / 34



Different forms of Wave equation

Wave equation for Displacement potential (u = ∇ψ)

∇2ψ − 1
c2
∂2ψ

∂t2 = 0

Wave equation in the presence of a source

∇2ψ − 1
c2
∂2ψ

∂t2 = f (r, t)

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 7 / 34



Different forms of Wave equation

Wave equation for Displacement potential (u = ∇ψ)

∇2ψ − 1
c2
∂2ψ

∂t2 = 0

Wave equation in the presence of a source

∇2ψ − 1
c2
∂2ψ

∂t2 = f (r, t)

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 7 / 34



Helmholtz equation

Wave equation in the frequency domain.

Obtained by taking the Fourier transform of the time domain wave
equation.

[∇2 + k2(r)]ψ(r, ω) = f (r, ω) where k(r) =
ω

c(r)

Not suitable to broadband applications due to the complexity of
obtaining the inverse fourier transform.
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Solution of the wave equation

Three dimensional, elliptical partial differential equation.

No universal solution available.

The solution depends on the following factors:
Dimensionality of the problem
Sound speed variations c(r)
Boundary conditions
Source-receiver geometry
frequency and bandwidth

Optimum approach is the hybridization of analytical and numerical
methods.
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Wave equation solution in different co-ordinate systems

Cartesian coordinates

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

ψ(x, y, z) =

{
Aeik·r

Be−ik·r

where k = (kx, ky, kz) is the wave vector and A, B are arbitrary
amplitudes
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Wave equation solution in different co-ordinate systems

Cylindrical coordinates

∇2 =
1
r
∂

∂r
r
∂

∂r
+

1
r2

∂2

∂ϕ2 +
∂2

∂z2

For uniform line source, the solution of the wave equations is

ψ(r) =

{
CH(1)

0 (kr)

DH(2)
0 (kr)

where H(1)
0 ,H(2)

0 are the hankel functions which can be represented in
the asymptotic form as

H(1)
0 (kr) '

√
2
πkr

ei(kr−π/4)

H(2)
0 (kr) '

√
2
πkr

e−i(kr−π/4)
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Wave equation solution in different co-ordinate systems

Spherical Co-ordinates

∇2 =
1
r2
∂

∂r
r2 ∂

∂r
+

1
r2sinθ

∂

∂θ
sinθ

∂

∂θ
+

1
r2sin2θ

∂2

∂φ2

ψ(r) =

{
(A/r)eik·r

(B/r)e−ik·r

where k is the wave vector and A, B are arbitrary amplitudes
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Source in an unbounded medium

Assuming an acoustic field in a homogeneous fluid due to a small sphere
of radius a with a surface displacement given as

ur(t, a) = U(t)

In the homogeneous fluid, the field will be omni-directional, with the
radial displacement

ur =
∂ψ(r, t)
∂r
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Source in an unbounded medium

where ψ is the displacement potential.

Taking the fourier transform and applying the boundary condition, the
solution the displacement field becomes

ψ(r) = −Sω
eikr

4πr

where Sω is the source strength.
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Green Function

Green function can be defined as the behavior of the channel. In
frequency domain it is given by

gω(r, r0) =
eikR

4πR
where R = |r − r0|

Green function satisfies the inhomogeneous Helmholtz equation,

[∇2 + k2]gω(r, r0) = −δ(r − r0)

The green function for the time domain wave equation is obtained by
taking the Fourier transform

gt(r, r0) =
δ(R/c− t)

4πR
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Source in a bounded medium

In case of more realistic environment like a bounded media, the green
function satisfies the Helmholtz equation by

[∇2 + k2]Gω(r, r0) = δ(r − r0)

Gω(r, r0) = gω(r, r0) + Hω(r)

Using the green function for the bounded medium and doing some
mathematical manipulations
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Source in a bounded medium

ψ(r) =
∫

S

[
Gω(r, r0)

∂ψ(r0)

∂n0
− ψ(r0)

∂Gω(r, r0)

∂n0

]
dS0

−
∫

V
f (r0)Gω(r, r0)dV0

where n0 is the outward pointing normal on the surface.
Difficult to attain the closed form solution.
Make assumptions on the green function to simplify the expression.
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Point source in fluid halfspace

Assuming a point source is placed at rs = (xs, ys, zs) and origin at the
surface, we can replace the pressure release boundary condition by

ψ(r0) = 0, r0 = (x, y, 0)

Using the green function for the bounded media we have

ψ(r) =
∫

S
Gω(r, r0)

∂ψ(r0)

∂n0
−
∫

V
f (r0)Gω(r, r0)dV0

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 18 / 34



Point source in fluid halfspace

Assuming a point source is placed at rs = (xs, ys, zs) and origin at the
surface, we can replace the pressure release boundary condition by

ψ(r0) = 0, r0 = (x, y, 0)

Using the green function for the bounded media we have

ψ(r) =
∫

S
Gω(r, r0)

∂ψ(r0)

∂n0
−
∫

V
f (r0)Gω(r, r0)dV0

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 18 / 34



Point source in fluid halfspace

Assuming a point source is placed at rs = (xs, ys, zs) and origin at the
surface, we can replace the pressure release boundary condition by

ψ(r0) = 0, r0 = (x, y, 0)

Using the green function for the bounded media we have

ψ(r) =
∫

S
Gω(r, r0)

∂ψ(r0)

∂n0
−
∫

V
f (r0)Gω(r, r0)dV0

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 18 / 34



Point source in fluid halfspace

where n0 is the outward pointing normal on the surface.
For a point source, the source field is given by

f (r0) = Sωδ(r0 − rs)

In order to simplify, we can choose the green function such that
Gω(r, r0) = 0 then the displacement potential becomes

ψ(r) = −SωGω(r, rs)
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Integral Transform Technique

Applicable when both the coefficients of the Helmholtz equation and
boundary conditions are independent of one or more space coordinates.

Choice of the coordinate system is important.

Boundary conditions control the choice of the coordinate system.
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Plane propagation problem

Choosing the Cartesian coordinates and assuming an infinite line source
along y-axis, the Helmholtz equation is reduced to two dimension, the
range and the depth.[

∂2

∂x2 +
∂2

∂z2 + k2(z)
]
ψ(x, z) = Sωδ(x)δ(z− zs)

The boundary condition is given by
B[ψ(r)]z=zn = 0, n = 1, . . . ,N

Taking the Fourier transform to obtain the depth separated equation and
inserting the value of the displacement potential,[

d2

dz2 + (k2 − k2
x)

]
Gω(kx, z, zs) = −

δ(z− zs)

2π
Gω(kx, z, zs) is the depth dependent Green function, which is the
superposition of the free field and homogeneous field.
The total field must satisfy the boundary conditions.
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Reflection and Transmission

Assuming the simplest of the bottom model as shown in the figure. The
point source is located in the water column at depth z = zs.
For homogeneous medium, the solution of the equation is given as

Hω(kr, z) = A+(kr)eikzz + A−(kr)e−ikzz

Where kz is the vertical wavenumber, given by

kz =
√

k2 − k2
r
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Reflection and Transmission

Using the radiation condition, the homogeneous solution in the upper
halfspace is given by

Hω,1(kr, z) = A−1 (kr)e−ikz,1z

Similarly the solution in the lower halfspace will be

Hω,2(kr, z) = A+
2 (kr)eikz,2z

Both unknown amplitudes can be found using the boundary conditions of
continuity of vertical displacement and continuity of pressure. The
expression for the amplitudes is given by

A−1 =
ρ2kz,1 − ρ1kz,2

ρ2kz,1 + ρ1kz,2
gω,1(kr, 0, zs)

A+
2 =

2ρ1kz,1

ρ2kz,1 + ρ1kz,2
gω,1(kr, 0, zs)

The total field must satisfy the boundary conditions.
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Hard Bottom Vs Soft Bottom

Figure : Spectral Domain for the hard bottom (top), soft bottom (bottom)
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Hard Bottom Vs Soft Bottom

Figure : Reflection coefficient as a function of grazing angle for hard bottom (top),
soft bottom (bottom). Solid curve: Magnitude. Dashed curve: Phase
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Ideal fluid waveguide

Assuming the simplest ocean waveguide with range independent,
isovelocity water column and perfectly rigid boundaries as shown in the
figure.

Solution of the waveguide problem can be obtained by superposition
principle.
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Ideal fluid waveguide

The field produced at point (0, zs) in the absence of boundaries is given
by

ψ(r, z) = −Sω
eikR

4πR

For solving the homogeneous equation which satisfies the boundary
conditions, we can use two methods

Image Method.
Integral Transform solution.
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Ideal fluid waveguide

In the waveguide problem, sound will be multiply reflected between the
two boundaries and require an infinite number of image sources.

Figure above shows the contribution from the physical source at depth zs

and the first three image sources, leading to the first four terms in the
expression in the total field

ψ(r, z) ' −Sω
4π

[
eikR01

R01
− eikR02

R02
− eikR03

R03
+

eikR04

R04

]
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Ideal fluid waveguide

where the negative sign corresponds to an odd number of reflections and
the positive signs correspond to an even number of reflections.

Expanding it to the total field, we have

ψ(r, z) =
−Sω
4π

∞∑
m=0

[
eikRm1

Rm1
− eikRm2

Rm2
− eikRm3

Rm3
+

eikRm4

Rm4

]
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Ideal fluid waveguide

Computing the time domain green function, we have

gt(r, z) =
1

4π

∞∑
m=0

(
δ(Rm1/c− t)

Rm1
− δ(Rm2/c− t)

Rm2

−δ(Rm3/c− t)
Rm3

+
δ(Rm4/c− t)

Rm4
)

In order to obtain the received signal, the source function is convolved
with the time domain green function.

At low frequencies, the multiples will interfere and the received signal
will be distorted.

Only short and high frequency pulses can be individually identified as
true images of the source signal.
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Integral Transform solution

Using the integral transform technique, the total field is represented as

ψ(r, z) =
∫ ∞

0
ψ(kr, z)J0(krr)krdkr

Using the superposition principle and applying the boundary conditions,
the free-field waveguide solution becomes

ψ(kr, z) = −
Sω
4π


sinkzzsinkz(D−zs)

kzsinkzD , z < zs

sinkzzssinkz(D−z)
kzsinkzD , z > zs

Using the relation between Hankel and Bassel function and doing some
algebraic manipulations we have

ψ(r, z) =
iSω
2D

∞∑
m=1

sin(kzmz)sin(kzmzs)H
(1)
0 (krmr)
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Normal Mode solution

ψ(r, z) =
iSω
2D
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m=1
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This is the normal mode expansion of the field.

The field remains the same even if the source and the receiver are
interchanged

Modal excitation is proportional to the amplitude of that particular mode
at the source depth.

Propagating Vs Evanescent modes.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 32 / 34



Normal Mode solution

ψ(r, z) =
iSω
2D

∞∑
m=1

sin(kzmz)sin(kzmzs)H
(1)
0 (krmr)

This is the normal mode expansion of the field.

The field remains the same even if the source and the receiver are
interchanged

Modal excitation is proportional to the amplitude of that particular mode
at the source depth.

Propagating Vs Evanescent modes.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 32 / 34



Normal Mode solution

ψ(r, z) =
iSω
2D

∞∑
m=1

sin(kzmz)sin(kzmzs)H
(1)
0 (krmr)

This is the normal mode expansion of the field.

The field remains the same even if the source and the receiver are
interchanged

Modal excitation is proportional to the amplitude of that particular mode
at the source depth.

Propagating Vs Evanescent modes.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 32 / 34



Normal Mode solution

ψ(r, z) =
iSω
2D

∞∑
m=1

sin(kzmz)sin(kzmzs)H
(1)
0 (krmr)

This is the normal mode expansion of the field.

The field remains the same even if the source and the receiver are
interchanged

Modal excitation is proportional to the amplitude of that particular mode
at the source depth.

Propagating Vs Evanescent modes.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 32 / 34



Normal Mode solution

ψ(r, z) =
iSω
2D

∞∑
m=1

sin(kzmz)sin(kzmzs)H
(1)
0 (krmr)

This is the normal mode expansion of the field.

The field remains the same even if the source and the receiver are
interchanged

Modal excitation is proportional to the amplitude of that particular mode
at the source depth.

Propagating Vs Evanescent modes.

SALMAN IJAZ SIDDIQUI ARC Seminar 2 26/03/2015 32 / 34



Relation between Rays and Modes

A normal mode is the superposition of up and down going plane waves.

sin(kzmz) =
eikzmz − e−ikzmz

2i
Both of the waves are propagating at the grazing angles
θm = arctan(kzm/krm). The propagation path is shown in the figure.
The dashed line shows the common wavefront for the wave passing
through points A and B. The distance between A and B is given by
LAB = mλ where λ is the acoustic wavelength.
The discrete wavenumbers are the points where multiple reflections of
the plane wave are in phase, giving rise to resonance.
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Deep Ocean waveguide

Depth variations and temporal variations of the sound speed profile.

The scale of temporal variations is much larger than the vertical
variations.

Range independent environment can provide a realistic model of the
deep ocean specially for the arctic environment.

In the exact solution, the water column is divided in multiple layers and
the wave equation is solved for each layer.

WKB solution approximates the solution of the wave equation by
amplitude and phase where both are functions of depth.
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